Подпишись и читай
самые интересные
статьи первым!

Какие параметры определяют микроклимат производственной среды. Микроклимат - это что? Производственный микроклимат. Гигиенические требования к микроклимату помещений. Состояние, в котором находится ацетилен в баллонах

Тема 3. ПРОИЗВОДСТВЕННЫЕ ВРЕДНОСТИ И МЕТОДЫ ЗАЩИТЫ ЧЕЛОВЕКА ОТ ИХ НЕГАТИВНОГО ВЛИЯНИЯ

Определение и классификация производственных вредностей

В трудовой деятельности на работников влияют разные вредные факторы производственной среды. Поэтому условия труда на производстве в значительной мере определяются наличием производственных вредностей (вредных факторов производственной среды). Под производственными вредностями понимают условия производственной среды, трудового и производственного процессов, которые при нерациональной организации труда влияют на состояние здоровья работников и на их работоспособность.

Вредные производственные факторы за характером влияния разделяются на физические, химические, биологические и психологические (табл. 3.1).

Таблица 3.1

ВИДЫ ВРЕДНЫХ ФАКТОРОВ

В зависимости от характера происхождения производственные вредности разделяются на три группы:

Вредности, связанные с трудовым процессом. Они обусловленные нерациональной организацией труды (избыточным напряжением нервной системы, напряжением органов зрения, слуха, большой интенсивностью труда и тому подобное);

Вредности, связанные с производственным процессом. Они создаются за счет технических недостатков производственного оборудования (промышленной пыли, шума, вибрации, вредных химических веществ, излучения). Почти все они нормируются путем установки стандартов, санитарных норм и количественно оцениваются;

Вредности, связанные с внешними обстоятельствами труда и производства. Они обусловлены недостатками санитарных условий на рабочем месте (нерациональным отоплением производственных помещений и др.).



Многочисленными исследованиями гигиенистов и физиологов труда установлено, что производственные вредности неблагоприятно влияют на работников, снижают их дееспособность и ухудшают состояние здоровья.

Следствием действия производственных вредностей могут быть:

Профессиональные заболевания;

Усиление заболевания, которое уже имеет работник и снижение сопротивляемости его организма относительно внешних факторов, которые предопределяют повышение общей заболеваемости;

Снижение работоспособности и производительности труда.

Микроклимат производственных помещений, его влияние на организм работника и мероприятия по снижению его неблагоприятного влияния

Существенное влияние на состояние организма человека, его работоспособность оказывает микроклимат (метеорологические условия) в производственных помещениях, под которым понимают климат внутренней среды этих помещений, который определяется действующими на организм человека сочетаниями температуры, влажности, скорости движения воздуха и теплового излучения нагретых поверхностей.

Микроклимат производственных помещений, в основном, влияет на тепловое состояние организма человека и его теплообмен с окружающей средой.

Несмотря на то, что параметры микроклимата производственных помещений могут значительно колебаться, температура тела человека остается постоянной (36,6 °С). Свойство человеческого организма поддерживать тепловой баланс называется терморегуляцией. Нормальное протекание физиологических процессов в организме возможно лишь тогда, когда выделяемое организмом тепло непрерывно отводится в окружающую среду. Количество тепла, выделяемое человеком, главным образом, зависит от степени тяжести выполняемой работы и температурного режима.

Отдача теплоты организмом человека во внешнюю среду происходит тремя основными способами (путями): конвекцией, излучением и испарением.

Снижение температуры при всех других одинаковых условиях приводит к росту теплоотдачи путем конвекции и излучения и может привести к переохлаждению организма. При высокой температуре практически все тепло, которое выделяется, отдается в окружающую среду испарением пота. Если микроклимат характеризуется не только высокой температурой, но и значительной влажностью воздуха, то пот не испаряется, а стекает каплями с поверхности кожи.

Недостаточная влажность приводит к интенсивному испарению влаги со слизистых оболочек, их пересыханию и эрозии, загрязнению болезнетворными микробами. Вода и соли, выделяемые из организма потом, должны замещаться, поскольку их потеря приводит к сгущиванию крови и нарушению деятельности сердечно-сосудистой системы. Обезвоживание организма на 6% вызывает нарушение умственной деятельности, – снижение остроты зрения. Обезвоживание на 15...20% приводит к смерти. Для восстановления водного балланса рабочим горячих цехов рекомендуется употреблять подсоленную (0,5% NaCl воду (4...5 л на человека за смену), белково-витаминный напиток.

Повышение скорости движения воздуха способствует усилению процесса теплоотдачи конвекцией и испарением пота.

Длительное влияние высокой температуры в сочетании со значительной влажностью может привести к накоплению тепла в организме и к гипертермии – состоянию, при котором температура тела повышается до 38...40 °С. При гипертермии, и как следствие, тепловом ударе, наблюдается головная боль, головокружение, общая слабость, изменение цветового восприятия, сухость во рту, тошнота, рвота, потовыделение. Пульс и частота дыхания ускоряются, в крови возрастает содержание остаточного азота и молочной кислоты. Наблюдается бледность, посинение кожи, зрачки расширены, иногда возникают судороги, потеря сознания.

При низкой температуре, значительной скорости и влажности воздуха возникает переохлаждение организма (гипотермия). На начальном этапе воздействия умеренного холода наблюдается снижение частоты дыхания, увеличение объема вдоха. При длительном воздействии холода дыхание становится неритмичным, частота и объем вдоха растут, изменяется углеводный обмен. Появляется мускульное сокращение (дрожь), при котором внешняя работа не выполняется и вся энергия сокращения мышц превращается в теплоту. Это позволяет в течение некоторого времени задерживать снижение температуры внутренних органов. В следствие воздействия низких температур могут возникнуть холодовые травмы.

Параметры микроклимата оказывают также существенное влияние на производительность труда и на травматизм.

НОРМАЛИЗАЦИЯ ПАРАМЕТРОВ МИКРОКЛИМАТА

Основным нормативным документом, который определяет параметры микроклимата производственных помещений является ГОСТ 12.1.005-88. Указанные параметры нормируются для рабочей зоны – пространства, ограниченного по высоте 2 м над уровнем пола или площадки, на которых находятся рабочие места постоянного или временного пребывания работников.

В основу принципов нормирования параметров микроклимата положена дифференциальная оценка оптимальных и допустимых метеорологических условий в рабочей зоне в зависимости от тепловой характеристики производственного помещения, категории работ по степени тяжести и периода года.

Оптимальными (комфортными) считаются такие условия, при которых имеют место наивысшая работоспособность и хорошее самочувствие. Допустимые микроклиматические условия предусматривают возможность напряженной работы механизма терморегуляции, которая не выходит за границы возможностей организма, а также дискомфортные ощущения.

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ МИКРОКЛИМАТА

Для того чтобы определить, соответствует ли воздушная среда данного помещения установленным нормам, необходимо количественно оценить каждый из ее параметров.

Температуру измеряют обычными ртутными или спиртовыми термометрами. В помещениях со значительными тепловыми излучениями используют парный термометр, который состоит из двух термометров (зачерненного и посеребренного). Для непрерывной регистрации температуры окружающего воздуха применяют самопишущий прибор – термограф. Температуру воздуха измеряют в нескольких точках рабочей зоны, как правило на уровне 1,3-1,5 м от пола в различное время.

Относительная влажность воздуха (отношение фактического содержимого массы водяных паров, которые содержатся в 1 м 3 воздуха, к максимально возможному их содержанию при данной температуре) определяется психрометром Августа, аспирационным психрометром, гигрометром и гигрографом.

Для измерения скорости движения воздуха используют крыльчатые (0,3-0,5 м/с) и чашечные (1-20 м/с) анемометры (рис. 2.2 в), а для определения малых скоростей движения воздуха (меньше 0,5 м/с) – термоанемометри и кататермометри.

Цель работы

Изучить принципы нормирования параметров микроклимата в производственных помещениях.

Экспериментально определить параметры микроклимата на рабочем месте и оценить их на основании действующих санитарных норм.

Основные параметры микроклимата и их влияние на организм человека

Под микроклиматом в производственном помещении понимают совокупность параметров воздуха: температура, влажность, скорость его перемещения, при условии, что отсутствуют источники излучения с эквивалентной тепловой температурой выше 40 о С. Микроклимат на производстве необходим для производительной и качественной работы человека. Обычно имеют в виду микроклимат рабочего помещения, в котором может быть производство, читальный зал, банковский оффис и др.

Нормирование параметров микроклимата в производственных помещениях состоит из измерения параметров воздуха и их сравнении с нормами, полученными в результате исследований специалистами по гигиене труда. При соответствии параметров микроклимата нормам дается положительное заключение. При несоответствии - должны быть проведены работы по приведению микроклимата к норме. В настоящее время существует множество способов влияния на микроклимат, от использования теплорадиаторов и кондиционеров до автоматических систем поддержания микроклимата.

Нормирование микроклимата представляет собой довольно простой процесс, доступный лаборанту. Чтобы обучить этого лаборанта и правильно проектировать системы поддержания микроклимата инженер должен владеть более широкими знаниями, краткое изложение которых дается ниже.

Человек представляет собой открытую биологическую систему, которая характеризуется тем, что потоки энергии, вещества и информации являются сквозными и косвенно отзывающимися в этой системе. Длительность прохождения этих потоков специфична для различных экологических систем, в том числе и для людей. Тепло - форма энергии, имеющая важное значение для поддержания живых организмов. Все живые системы нуждаются в непрерывном снабжении теплом для предотвращения их деградации и гибели. Температура является показателем количества тепловой энергии в системе и основным фактором, определяющим скорость химических реакций в организме. Основным источником входной энергии является пища, характеризуемая количеством ккал 1 , и различные виды лучистой энергии, измеряемыми интенсивностью их потоков в Вт/м 2 . Выходом энергии являются производимая организмом работа, потери за счет явлений теплопередачи и конвекции, излучение тепла и испарение жидкости с поверхности тела.

С точки зрения биологии человек относится к эндотермным животным, т.е. температура его тела не зависит от состояния окружающей среды и поддерживается постоянной гомеостатическими системами регулирования в организме. Для человека такой температурой являются значения 36,5 -37 о С. При этом под температурой тела имеют ввиду температуру тканей, лежащих глубже 2,5 см под поверхностью кожи. Температура поверхности кожи человека может иметь значения в широких пределах. Так при температуре окружающего воздуха 19 о С температура кожи на конечностях становится равной 20,5 о С.

Уравнение теплового баланса для организма человека за определенный период времени может быть представлено в следующем виде:

M +S  R  C  P  E = 0, (1)

M - тепло процессов метаболизма, полученное из химических субстратов пищи, подвергшихся расщеплению в клетках.

S - накопленное организмом тепло.

R, C, P - тепло отданное (со знаком -) или полученное (со знаком +) путем излучения, конвекции, теплопередачи,

E - тепло, отданное за счет испарения.

Если тепловой баланс не будет поддерживаться, то дополнительное тепло, полученное различными путями, приведет к повышению температуры тела, а недостаток тепловой энергии - к его охлаждению. В обоих случаях создаются неблагоприятные условия для функционирования клеток организма, которые при превышении определенных температурных границ внутри тела начинают погибать. Тепловой баланс любого тела определяется соотношением между теплом, которое оно получает, и теплом, которое оно отдает. Человеческий организм способен вырабатывать достаточное количество тепла и регулировать теплоотдачу, поэтому равенство поступающей с пищей энергии и других форм энергии в виде потоков лучистой энергии (например от нагретых батарей) и расхода тепла с тела человека всегда сохраняется. Это свойство носит название гомойотермии.

Для поддержания стабильности внутренней температуры человека имеется терморегулирующая система, которая включает рецепторы, эффекторы и чрезвычайно чувствительный регуляторный центр в гипоталамусе 2 . У человека имеется примерно 150 тыс. холодовых и 16 тыс. тепловых рецепторов

В комфортных условиях для взрослого человека средних лет, при отсутствии физической нагрузки, для нормального осуществления жизненно важных функций в его организме должно производится 1800 ккал тепла в сутки. Это тепло в конечном итоге должно быть выведено из вне в силу непрерывности метаболических процессов.

Средняя за сутки метаболическая мощность человека P h [Вт] определяется калорийностью пищи Q [кал]:

P h = 4,1868 Q / (24x60x60) = 4,85 10 -5 Q.

Эта мощность тратится на выполнение человеком призводственной работы и на работу гомеостатическтх систем человека. Чем неблагоприятнее параметры микроклимата, тем больше энергии тратится на терморегулирование организма человека.

Механизм выхода энергии регулируется гомеостатическими системами регулирования в организме, призванными поддерживать постоянство внутренней температуры тела человека 36,6 о С. Это необходимо для нормального функционирования биологических клеток организма. Поддержанию постоянства температуры внутренней среды человека способствует разветвленная кровеносная система, обеспечивающая отвод тепла от внутренних органов к поверхности тела. С наибольшей скоростью кровь течет в аорте (0,5м/с), в артериях достигает 0,25 м/с, а в капиллярах снижается до 0,5 мм/с. Медленное течение в капиллярах и их большая разветвленность способствует хорошему теплообмену. Общая длина капилляров у человека достигает 100 км, а их поверхность - 6300 м 2 . Другими словами это радиатор с огромными размерами по сравнению с человеком, что определяет эффективность его работы.

Для характеристики теплообмена следует соотнести величину основных энергозатрат с поверхностью тела человека, которая в среднем для мужского населения равна 1,8м 2 . При калорийности пищи в сутки 1800 ккал теплообмен составляет 40,5 кал/(чм 2). Калорийность пищи должна быть на 20% выше энергозатрат организма. При недостаточной калорийности организм стремится поддерживать постоянную температуру внутренней среды и протекание обменных процессов за счет питательных веществ некоторых тканей организма, прежде всего мышечных, что приводит к истощению.

Энергозатраты организма измеряются методами калориметра:

    прямая калориметрия - измерение непосредственно выделяемого тепла;

    алиментарная калориметрия - определении тепла при окислении пищевых продуктов;

    респираторная калориметрия - определение по обмену газов в легких, используя термические коэффициенты О 2 и СО 2 .

Работа, при которой энергозатраты организма составляют менее 2500 ккал в сутки оценивается как легкая . Работы с энергозатратами свыше 5000 ккал считаются тяжелыми . Категория работы может быть оценена по ее характеристике (см. табл.2).

Интенсивность работы гомеостатических систем регулирования внутренней температуры зависит от внешних условий среды: температуры, влажности, скорости ветра и наличия энергетических полей. Эффективность гомеостатических систем зависит от состояния нервной 3 и эндокринной 4 систем человека.

Ниже рассматриваются влияние метеоусловий условий на самочувствие человека с нормальным состоянием этих систем и естественными поведенческими функциями, выражающимися в выборе типа одежды и стратегии поведения при наличии внешних энергетических потоков 5 .

Микроклимат производственных помещений - климат внутренней среды этих помещений, который определяется действующими на организм человека сочетаниями температуры, влажности и скорости движения воздуха, а также температурой окружающих поверхностей.

Указанные параметры - каждый в отдельности и в совокупности - оказывают значительное влияние на работоспособность человека, его самочувствие и здоровье. В производственных условиях характерно суммарное действие микроклиматических факторов.

С целью создания нормальных условий установлены нормы производственного микроклимата (ГОСТ 12.1.005-76. “ССБТ. Воздух рабочей зоны”), которые определяют оптимальные и допустимые значения температуры, влажности и скорости движения воздуха в рабочих зонах производственных помещений с учетом тяжести выполняемой работы, периодов года (теплый или холодный и переходный) и характеристики помещений по избыткам явного тепла.

Оптимальные микроклиматические условия - сочетание параметров микроклимата, которые при длительном и систематическом воздействии на человека обеспечивают сохранение нормального функционального и теплового состояния организма без напряжения реакций терморегуляции. Оптимальные микроклиматические условия обеспечивают ощущение теплового комфорта и создают предпосылки для высокого уровня работоспособности.

Допустимые микроклиматические условия - сочетания параметров микроклимата, которые при длительном и систематическом воздействии на человека могут вызвать приходящие и быстро нормализующиеся изменения функционального и теплового состояния организма и напряжения реакций терморегуляции, не выходящие за пределы физиологических приспособительных возможностей. При этом не возникает повреждений или нарушений состояния здоровья, но могут наблюдаться дискомфортные теплоощущения, ухудшение самочувствия и понижение работоспособности.

Температура воздуха является одним из основных параметров, характеризующих тепловое состояние микроклимата.

Влажность воздуха - содержание в воздухе водяного пара. Различают абсолютную, максимальную и относительную влажность.

Абсолютная влажность (А) - упругость водяных паров, находящихся в момент исследования в воздухе, выраженное в мм ртутного столба, или массовое количество водяных паров, находящихся в 1 м 3 воздуха, выражаемое в граммах.

Максимальная влажность (F) - упругость или масса водяных паров, которые могут насытить 1 м 3 воздуха при данной температуре.

Относительная влажность (R) - это отношение абсолютной влажности к максимальной, выраженной в процентах.

В воздухе, избыточно насыщенном водяными парами, затрудняется испарение влаги с поверхности кожи и дыхательных путей, что может привести к ухудшению здоровья и снижению работоспособности. При понижении относительной влажности до 20-30 % у человека возникает неприятное ощущение сухости слизистых оболочек верхних дыхательных путей.

Движение воздуха человек начинает ощущать при скорости около 0,15 м/c. Если температура воздуха при этом менее 36 0 С, то человек ощущает освежающее действие воздушного потока. При температуре воздуха свыше 40 0 С такие потоки действуют угнетающе.

Непосредственным измерением трудно установить количество теплоты, отдаваемой человеком. Поэтому об интенсивности общей теплоотдачи судят по косвенным показателям - значениям эффективной и эквивалентно -эффективной температур, характеризующих пребывание в так называемой “зоне комфорта”, где терморегуляция обеспечивается организмом легко, или за пределами этой зоны, когда для нормальной терморегуляции организм человека преодолевает большие нагрузки. Эти температуры определяют по номограмме (см. рис. 1 на стенде).

Эффективной , ощущаемая человеком при определенной относительной влажности воздуха и при отсутствии его в помещении.

Эффективно-эквивалентной называется температура воздуха , ощущаемая человеком при определенной относительной влажности воздуха и определенной скорости его движения.

Применяемое оборудование

Лабораторная установка представляет собой макет помещения для моделирования различных метеорологических условий на рабочих местах.

Внутри макета (рис. 1) для измерения основных параметром микроклимата установлены аспирационный психрометр (1), барометр (2), анемометр крыльчатый (3), анемометр чашечный (4), секундомер (5), гигрометр (6). Для создания воздушного потока на лабораторном стенде имеется вентилятор, включение которого производится тумблером (7). Для изменения влажности воздуха внутри макета имеется емкость с водой (8).

В обычных условиях для измерения температуры воздуха используются термометры (ртутные или спиртовые), термографы (регистрирующие изменение температуры за определенное время) и сухие термометры психрометров. Для определения влажности воздуха применяются переносные аспирационные психрометры (Ассмана), реже стационарные психрометры (Августа) и гигрометры.

Рис. 1

Скорость движения воздуха измеряется крыльчатыми и чашечными анемометрами.

Аспирационный психрометр МВ-4М

Аспирационный психрометр МВ - 4М предназначен для определения относительной влажности воздуха в диапазоне от 10 до 100 % при температуре от -30 до +50 0 С. Цена деления шкал термометров не более 0.2 0 С. Принцип его работы основан на разности показаний сухого и смоченного термометров в зависимости от влажности окружающего воздуха. Он состоит из двух одинаковых ртутных термометров, резервуары которых помещены в металлические трубки защиты. Эти трубки соединены с воздухопроводными трубками, на верхнем конце которых укреплен аспирационный блок с крыльчаткой, заводимый ключом.

Перед измерением резервуар правого термометра, обернутый тонкой тканью, смачивается дистиллированой водой с помощью пипетки. Затем ключем заводят пружину вентилятора психрометра. При этом снизу засасывается воздух, который отекает резервуары термометров. Таким образом, сухой термометр показывает этого потока воздуха, а показания смоченного термометра будут меньше, так как он охлаждается вследствие испарения воды с поверхности ткани. Показания термометров снимаются не ранее, чем через 3 минуты после начала работы вентилятора.

При измерениях аспирационным психрометром значение абсолютной влажности находится из следующего выражения:

A = F вл  0,5(t сух  t вл)B  755 (2)

где А - абсолютная влажность воздуха, мм.рт.ст.;

F вл - максимальная влажность при температуре влажного термометра (t ВЛ), берется из табл. 1 на стенде;

t сух, t вл - температуры, измеренные соответственно сухим и влажным термометрами, О С;

В - барометрическое давление, мм.рт.ст.

Относительная влажность воздуха (R, %) определяется из следующего выражения:

R = 100A  F сух (3)

где F сух - значение максимальной влажности при температуре сухого термометра t сух берется из табл. 1 на стенде.

Относительная влажность может быть определена также по психрометрической номограмме (рис. 2 на стенде). Для этого по вертикальным линиям отмечают показания сухого термометра, по наклонным - показания влажного термометра; на пересечении этих линий получают значение относительной влажности, выраженное в процентах. Линии, соответствующие десяткам процентов, обозначены на монограмме цифрами: 20, 30, 40, 50 и т. д.

Анемометр крыльчатый АСО-3

Крыльчатый анемометр применяется для измерения скоростей движения воздуха в диапазоне от 0,3 до 5 м/с. Ветроприемником анемометра служит крыльчатка, насаженная на ось, один конец которой закреплен на неподвижной опоре, а второй - через червячную передачу передает вращение редуктору счетного механизма. Его циферблат имеет три шкалы: тысяч, сотен и единиц. Включение и выключение механизма производится арретиром. Чувствительность прибора не более 0,2 м/с. Для определения скорости движения воздуха, измеренной с помощью анемометра (крыльчатого или чашечного) используется выражение:

V =(C 2 - C 1)  T, (4)

где V - скорость движения воздуха, делений/с;

С 1 и С 2 - соответственно начальные и конечные показания анемометра, дел.;

T - продолжительность измерения, с.

Для перевода значения скорости движения воздуха из дел/с в м/с использовать график к крыльчатому анемометру (рис. 3 на стенде).

Значение эффективной и эквивалентно-эффективной температур, характеризующих пребывание в зоне, называемой “зоной комфорта”, определяют по номограмме (рис. 1 на стенде). Эффективная температура определяется по номограмме на пересечении прямой линии, соединяющей сухого и влажного термометров (полученных по аспирационному психрометру) и нижней линией температур при скорости движения воздуха, равной нулю.

Эквивалентно-эффективная температура определяется по номограмме таким же способом, как эффективная, только с учетом разных скоростей движения воздуха, показанных на монограмме изогнутыми линиями.

Важнейшим физическим фактором окружающей (производственной) среды, от которого зависят работоспособность и состояние здоровья работающего населения является микроклимат. Производственный микроклимат характеризуется такими параметрами, как уровень температуры и влажности воздуха, скоростью его движения и интенсивностью тепловой радиации преимущественно в инфракрасной и частично в ультрафиолетовой области спектра электромагнитных излучений.

Температура воздуха, определяя метеорологические условия производственной среды, играет важнейшую роль в создании комфортных условий труда промышленных рабочих. На многих производствах - металлургических (доменные, конверторные, мартеновские, прокатные цеха), машиностроительных (литейные, кузнечные, термические цехи), а также тепловых электростанциях, текстильных, резиновых, швейных, стекольных, пищевых производствах, выпуске строительных материалов (кирпич, бетон) труд рабочих сопряжен с влиянием неблагоприятного нагревающего климата. В то же время, ряд производств, напротив, характеризуются пониженной температурой воздуха рабочих мест - труд работников, занятых на элеваторах, в складских помещениях, в некоторых цехах судостроительных заводов, мясо-молочной промышленности.

Работы на открытом воздухе (строительство, лесозаготовка, рыбный промысел, добыча нефти и газа, геологоразведка и др.) в осенний, зимний, весенний и летний периоды года зачастую проходят в крайне неблагоприятных климатических условиях. Порой разница между самой низкой и самой горячей точкой температуры воздуха достигает очень больших значений (диапазон колебаний составляет от 500С до 800С).

В этой связи, является несомненно актуальным гигиеническая оценка основных закономерностей формирования микроклимата, адаптации организма к нагревающему и охлаждающему климату, обоснование соответствующих нормативов, разработка комплексных профилактических мероприятий по обеспечению комфортного микроклимата.

Характеристика микроклимата. Параметрами микроклимата, при которых выполняет работу человек и от которой зависит теплообмен между организмом человека и окружающей средой, являются температура окружающей среды, скорость движения воздуха и влажность воздуха.

Температура окружающей среды и скорость движения атмосферного воздуха зависят от очень многих параметров, определяемых временем года и целым комплексом других гидро-метеорологических факторов, которые формируют климат региона. Движение воздуха в производственных помещениях создается конвекционными потоками, в результате неравномерного нагревания воздушных масс от источников тепловыделения.

Влажность воздуха зависит от содержания в нем паров воды и подразделяется на абсолютную влажность (выражается парциальным давлением водяных паров [Па] или в весовых единицах в определенном объеме воздуха [г/м ]); максимальную влажность (выражается количеством влаги при полном насыщении воздуха при данной температуре); относительную влажность (выражается отношением абсолютной влажности к максимальной, выраженной в процентах). Дефицит насыщения - это разница между максимальной и абсолютной влажностью воздуха.

Комфортный (нейтральный) микроклимат характеризуется комфортным тепловым ощущением, а тепловой баланс в организме обеспечивается без напряжения процессов терморегуляции.

Нагревающий микроклимат характеризуется тем, что на рабочих местах параметры микроклимата значительно выше средних значений границы зоны комфорта.

Охлаждающий микроклимат характеризуется температурами воздуха значительно меньшими, чем нижние границы зоны комфорта.

Терморегуляция - взаимосочетание процессов теплообразования и теплоотдачи, регулируемых нервно-эндокринным путем.

Теплообразование - тепло, продуцируемое организмом, за счет окислительновосстановительных реакций при сгорании белков, жиров и углеводов.

Теплоотдача - переход теплоты, освобождаемой в процессе жизнедеятельности, из организма в окружающую среду.

Теплоотдача осуществляется путем радиационной теплоотдачи (излучением тепла телом человека по отношению к окружающим поверхностям, имеющим более низкую температуру); конвекции (отдача тепла с поверхности тела человека притекающими к нему менее нагретым слоям воздуха); проведения тепла (отдача тепла предметам, непосредственно соприкасающимся с поверхностью тела); испарения воды с поверхности кожи и дыхательных путей. В условиях метеорологического комфорта, теплоотдача излучением составляет в среднем 5065%, испарением воды (пота) - 20-25%, конвекцией - 15-30% от общих потерь тепла организмом.

Влияние нагревающего и охлаждающего микроклимата на организм.

Являясь саморегулирующей системой, организм человека, используя целый каскад физиолого-биохимических реакций, поддерживает постоянство температуры тела за счет усиления или ослабления механизмов теплопродукции и теплоотдачи. Динамическое соотношение процессов теплообразования и теплоотдачи регулируются терморегуляторными центрами и корой головного мозга. При этом совокупность физиолого-биохимических процессов, обусловленная деятельностью центральной нервной системы, направленной на поддержание температурного гомеостаза, определяет саму суть процесса терморегуляции.

Терморегуляция является одним из наиболее важных физиологических механизмов, с помощью которых поддерживается относительное динамическое постоянство функций организма при различных метеорологических условиях и разной тяжести выполняемой работы. Система терморегуляции включает тепловой центр, расположенный в гипоталамусе, термочувствительные нервные клетки в различных отделах центральной нервной системы, терморецепторы внутренних органов, слизистых оболочек и кожи с соответствующими нервными проводящими путями, эфферентные нервные пути и эффекторные органы в виде кожных сосудов, эндокринных и потовых желез, скелетных мышц.

Среди физиологических механизмов, с помощью которых устанавливается соответствующее соотношение химической и физической терморегуляции, большую роль играет симпатическая нервная система. По симпатическим нервным волокнам импульсы от центральной нервной системы передаются мускулатуре и печени, участвующим в процессе химической терморегуляции. Характер и интенсивность теплоотдачи с поверхности кожи, в реализации механизма которого важное значение отводится сосудистой реакции в ответ на раздражение температурным фактором, также во многом определяется деятельностью симпатической нервной системы.

При воздействии на организм нагревающего климата механизм терморегуляции способствует увеличению теплоотдачи через систему кровообращения и повышенным потоотделением. Роль системы кровообращения состоит в увеличении частоты сердечных сокращений и минутного объема крови, в результате чего происходит усиление тока крови через кожу в следствие расширения кожных сосудов и капилляров. Указанный механизм приводит к увеличению теплопроводности тканей и поступлению тепла в окружающую среду.

При воздействии на организм охлаждающего климата, механизмы терморегуляции направлены на уменьшение теплоотдачи и увеличение количества тепла, вырабатываемого организмом. Уменьшение теплоотдачи происходит в результате сужения (спазма) кровеносных сосудов поверхностных тканей и снижения их температуры. Увеличение теплообразования осуществляется преимущественно за счет повышения мышечного тонуса и рефлекторно возникающей дрожи скелетной мускулатуры.

Сложный процесс физической химической терморегуляции в

производственных условиях характеризуется многообразными изменениями и взаимодействием физиологических функций работающего организма. При перегревании и переохлаждении в организме возникают значительные изменения в поведенческих, физиологических реакциях, включая и эндокринную систему. Охлаждение организма, как правило, сопровождается усиленной секрецией адреналина, который стимулирует клеточный обмен и уменьшает теплоотдачу. В таблице № 12 представлена классификация тепловых состояний организма человека, построенная на данных о характере изменения приспособительных механизмов системы терморегуляции в условиях теплового равновесия, перегревания и охлаждения.

Оптимальный микроклимат характеризуется сочетанием таких параметров, которые обусловливают сохранение нормального функционального состояния организма без напряжения реакции терморегуляции. Он создает ощущение теплового комфорта и предпосылки для сохранения высокого уровня работоспособности. Допустимым микроклиматом является сочетание параметров, которые вызывают изменение функционального состояния организма и напряжение реакции терморегуляции, не выходящие за пределы физиологических приспособительных возможностей.

bgcolor=white>37,5
Показатель Уровень физиологических показателей в условиях
перегревания теплового

равновесия

охлаждения
предельно предельно допустимые допус оптималь допус предельно предельно
Т еплоощущения очень жарко тепло комфорт прох холодно очень
Ректальная температура, °С 39,5-38,5 38,4-37,7 37,6 37,0-37,4 36,7 36,6-35,5 Ниже 35,5
Оральная температура, °С 40,0-38,4 38,3-37,5 37,4 36,6-37,0 36,0 35,9-34,5 Ниже 34,5
Средневзвешенная температура кожи, °С 40,5-38,0 38,5-36,1 36,0 32,5-33,5 30,0 29,9-27,0 Ниже 27,0
Средняя температура тела, °С 39,5-38,5 38,4-37,6 36,0-36,7 34,5 34,4-31,7 Ниже 31,7
Разность температур туловища и конечностей (грудь-стопа), °С -2,5-+1,5 -1,5-0 0 +4,0-+2,0 +6,0 +6,0-+10,0 Выше 10,0
Внутренний градиент температур, °С +1,0-0 0--1,6 -1,6 -4,5--3,5 +6,7 -6,7--8,5 >-8,5
Т еплоизоляция поверхностных тканей, кло 0,60
Потеря веса, г/ч 1200-650 650-250 250 40-60 80 80-100 -
Частота пульса, уд/мин 160-120 120-90 90 60-80 60 60-50 -
Т еплопродукция организма, Вт/м2 80-65 65-45 45 60-45 70 70-140 Повышение до 350 с последующим уменьшением
Теплоотдача испарением влаги, Вт/м2 185-150 150-60 60 10-20 25 25-35 -
Изменение

организма,

+420-+250 +250-+15 +150 -50-+50 -250 -250--60 >-600

Гигиеническое нормирование микроклимата. Гигиеническое нормирование параметров производственного микроклимата установлено санитарными и гигиеническими нормами: СанПиН «Гигиенические требования к микроклимату производственных помещений» № 355 от 14.07.2005, МЗ РК; СН «Санитарные нормы ультрафиолетового излучения в производственных помещениях» № 1.02.02594; ГН «Гигиенические нормы интенсивности инфракрасного излучения от нагретых поверхностей оборудования и ограждений в машинных и котельных отделениях и других производственных помещениях судов» № 1.02.026-94.

Нормируются оптимальные и допустимые параметры микроклимата - температура, относительная влажность и скорость движения воздуха. Значения параметров микроклимата устанавливаются в зависимости от способности человеческого организма к акклиматизации в разное время года и категории работ по уровню энергозатрат (Таблица № 13).

Таблица № 13. Нормируемые величины температуры, относительной влажности и скорости движения воздуха в рабочей зоне производственных помещений.
Период года Категории работ Температура воздуха, °С Относительная влажность, % Скорость движения

воздуха, м/с

оптимальная допустимая оптимальная допустимая оптимальная, не более допустимая
Верхняя Нижняя
На рабочих местах На рабочих местах, постоянных и непостоянных
Постоянных Непостоянных Постоянных Непостоянных
Холодный период года Легкая - 1а 22-24 25 26 21 18 40-60 75 0,1 не более 0,1
Легкая - 1б 21-23 24 25 20 17 40-60 75 0,1 не более 0,2
Средней тяжести - 11а 18-20 23 24 17 15 40-60 75 0,2 не более 0,3
Средней тяжести - 11б 17-19 21 23 15 13 40-60 75 0,2 не более 0,4
Тяжелая - III 16-18 19 20 13 12 40-60 75 0,3 не более 0,5
Теплый период года Легкая - 1а 23-25 28 30 22 20 40-60 55 при 28°С 0,1 0,1-0,2
Легкая - 1б 22-24 28 30 21 19 40-60 60 при 27°С 0,2 0,1-0,3
Средней тяжести - 11а 21-23 27 29 18 17 40-60 65 при 26°С 0,3 0,2-0,4
Средней тяжести - 11б 20-22 27 29 16 15 40-60 70 при 25°С 0,3 0,2-0,5
Тяжелая - III 18-20 26 28 15 13 40-60 75 при 24°С и ниже 0,4 0,2-0,6


Несмотря на адаптационно-приспособительные процессы, обеспечивающие повышение устойчивости организма человека к дискомфортным метеорологическим условиям среды, длительное и интенсивное воздействие тепла и холода, может привести к нарушению его компенсаторно-защитных механизмов и развитию патологических состояний. С целью исключения негативного влияния микроклимата на организм работающих, регламентируется время пребывания работающего контингента на рабочих местах в условиях нагревающего и охлаждающего климата. При этом среднесменная температура воздуха за обычный режим работы, когда люди находятся на рабочих местах, не должна выходить за пределы допустимых величин для соответствующих категорий работ (Таблицы № 14, 15).

Таблица № 14. Время пребывания на рабочих местах при температуре воздуха ниже допустимых величин.

Температура воздуха на рабочем месте, 0С Время пребывания, не более при категориях работ, ч
Па Пб III
1 2 3 4 5 6
6 - - - - 1
7 - - - - 2
1 2 3 4 5 6
8 - - - 1 3
9 - - - 2 4
10 - - 1 3 5
11 - - 2 4 6
12 - 1 3 5 7
13 1 2 4 6 8
14 2 3 5 7 -
15 3 4 6 8 -
16 4 5 7 - -
17 5 6 8 - -
18 6 7 - - -
19 7 8 - - -
20 8 - - - -

Таблица № 15. Время пребывания на рабочих местах при температуре воздуха выше допустимых величин.

Температура воздуха на рабочем месте, °С Время пребывания, не более при категоі оиях работ, ч
1а-1б Па-Пб П1
32,5 1 - -
32,0 2 - -
31,5 2,5 1 -
31,0 3 2 -
30,5 4 2,5 1
30,0 5 3 2
29,5 5,5 4 2,5
29,0 6 5 3
28,5 7 5,5 4
28,0 8 6 5
27,5 - 7 5,5
27,0 - 8 6
26,5 - - 7
26,0 - - 8

В практике санитарно-гигиенического контроля для оценки сочетанного воздействия параметров микроклимата и разработки мероприятий по защите работающих от возможного перегревания используется интегральный показатель тепловой нагрузки среды (ТНС-индекс). ТНС-индекс является эмпирическим показателем, характеризующим сочетанное воздействие на организм температуры, влажности, скорости движения воздуха и теплового облучения (Таблица № 16).



Профилактические мероприятия. Обеспечение теплового баланса осуществляется путем регулирования значений параметров микроклимата в помещении - температуры, относительной влажности и скорости движения воздуха. Поддержание указанных параметров на уровне оптимальных значений обеспечивает комфортные климатические условия человека, а на уровне допустимых - предельно допустимые, при которых система терморегуляции организма человека обеспечивает тепловой баланс и не допускает перегрева и переохлаждения организма.

Применение систем вентиляции, аэрации, отопления и кондиционирования воздуха обеспечивает требуемые параметры микроклимата и состава воздушной среды.

Эффективно работающая вентиляция (вентиляция - организованный и регулируемый воздухообмен, обеспечивающий удаление из помещения отработанного воздуха и подачу на его место свежего), кондиционирование воздуха (кондиционирование - искусственная автоматическая обработка воздуха с целью поддержания оптимальных микроклиматических условий независимо от характера технологического процесса и условий внешней среды), аэрация (аэрация - организованная естественная вентиляция помещений через фрамуги, форточки, окна) и отопление (отопление - система обеспечения оптимальной температуры воздуха в помещении в холодное время года, которое бывает водяным, паровым и электрическим) способствуют улучшению самочувствия человека и повышению его работоспособности.

На промышленном производстве используется комплекс мер, направленных на профилактику неблагоприятного воздействия нагревающего микроклимата, которые могут быть сгруппированы следующим образом:

Меры, направленные на ограничение тепловыделений в рабочую зону или обеспечивающие возможность работы вне зоны нагревающего микроклимата;

Меры, обеспечивающие снижение температуры воздуха и интенсивности инфракрасного излучения в рабочей зоне;

Меры, обеспечивающие нормализацию теплового состояния работающих в условиях нагревающего микроклимата и способствующие восстановлению физиологических показателей организма.

Комплекс инженерно-технических и санитарно-гигиенических мероприятий, направленных на снижение влияния нагревающего микроклимата на организм рабочих промышленных предприятий включает следующее: исключение пребывания рабочих в неблагоприятной зоне (механизация и автоматизация производственных процессов дистанционного управления); ограничение тепло- и влаговыделений от технологического источника (герметизация, термоизоляция); снижение инфракрасного излучения (экранирование рабочего места); использование средств индивидуальной защиты (костюмы, обувь, каски, рукавицы, очки, щитки); нормализацию физиологических функций организма работающего (рациональный режим труда и отдыха, питьевой режим обеспечивающий восстановление макро- и микроэлементов, витаминов, гидропроцедуры и др.).

В условиях воздействия на работающих охлаждающего микроклимата, профилактические мероприятия должны быть направлены на регламентацию работ, совершенствование санитарно-бытового обеспечения, применение эффективных способов обогрева работающих от охлаждения. Комплекс профилактических мероприятий включает следующее:

Мероприятия, направленные на создание оптимальных и допустимых микроклиматических условий (теплоизоляция помещений, устройство тамбуров и воздушно-тепловых завес у дверей, эффективно работающее отопление и др.);

Мероприятия, обеспечивающие поддержание допустимого теплового состояния работающих в холодный период года на открытом воздухе, в неотапливаемых помещениях и помещениях с искусственно созданным охлаждающим микроклиматом (применение спецодежды, регламентированные перерывы на обогрев и отдых, помещение для сушки спецодежды и обуви, защита временем).

Разработка новых технологических средств контроля и регуляции воздушной среды в производственных помещениях обусловлена необходимостью повышения требований к качеству условий работы. В благоприятной для самочувствия и здоровья в целом среде люди эффективнее справляются со своими обязанностями, что напрямую отражается на объемах производства. На данный момент ключевые факторы обеспечения чистого воздуха базируются на использовании устройств кондиционирования и промышленной вентиляции. Центральное же место в контексте рассмотрения проблем создания оптимальных условий для работы в помещениях занимает микроклимат - это совокупность показателей климата среды внутри производственного объекта. То есть можно выделить два аспекта, важных с точки зрения сохранения оптимального качества воздуха в помещении, - это микроклимат и его параметры.

Что такое производственный микроклимат?

В современных регламентах, предусмотренных для организации немало внимания уделяется безопасности рабочих. На фоне усложнения технологий изготовления, переработки и утилизации на предприятиях возникает и потребность в соответствующей защите людей. В плане определения концепции защиты персонала наибольшее значение имеет именно микроклимат - это совокупность параметров воздушной среды, на основе которых определяются допустимые и оптимальные величины температуры, влажности, теплового облучения и других характеристик. В дальнейшем они становятся отправной точкой для выработки стратегии создания комфортных условий для плодотворной работы людей на предприятии.

Факторы, влияющие на значение параметров

Формирование микроклимата происходит под действием нескольких факторов, определяющих и значения его параметров. В течение дня их показатели могут меняться, а на отдельных участках и вовсе различаться в одно и то же время. В список основных факторов, определяющих параметры микроклимата, входят следующие:

  • климатический пояс и время года;
  • размеры цехов, помещений, отделов;
  • условия и характеристики воздухообмена;
  • техническое обеспечение производственного процесса;
  • количество сотрудников.

Параметры микроклимата

При анализе условий формирования микроклимата в рабочем процессе параметры могут рассматриваться как по отдельности, так и в совокупности. К показателям, характеризующим производственную среду, относят скорость перемещения, значения влажности и температуру воздуха. Помимо этого, также учитывается возможное термооблучение. как правило, определяется характеристиками поверхностей. В частности, берется во внимание состояние конструкций и оборудования (агрегаты, приборы, экраны). Температурные параметры микроклимата учитываются только при условии наличия средств, обеспечивающих тепловыделение. Это же относится и к облучению теплом. Показатели влажности основываются на коэффициентах пара, который содержится в воздушной среде. При этом влажность может рассчитываться как максимальная, относительная и абсолютная.

Влияние микроклимата на организм

Параметры производственного микроклимата напрямую воздействуют на состояние человека. К примеру, снижение показателя температуры и увеличение скорости движения воздушных потоков усиливает конвективный теплообмен и теплоотдачу. Это происходит в процессе испарения пота и может способствовать переохлаждению организма. И напротив, производственный микроклимат может спровоцировать обратные процессы, если температура воздуха повышается. Влажность также играет немалую роль в воздействии производственной среды на тело человека. С этим показателем связаны переносимость организмом температуры и его тепловые ощущения. Если относительная влажность повышается, то испарение пота происходит медленнее и возникает риск перегрева организма.

Неблагоприятные воздействия на тепловые ощущения в большей степени оказывает повышенная влажность в условиях, когда температура превышает 30°С. Весь объем тепла, выделяемого на фоне испарения пота, будет уходить в окружающую среду, которую формирует рабочий микроклимат в данном помещении. Высокие показатели влажности исключают возможность испарения пота - его капли стекают по кожному покрову. В итоге запускается процесс проливного течения пота, что изнуряюще действует на человека и препятствует оптимальной теплоотдаче.

Санитарно-гигиенические требования

Нормы, регулирующие характеристики микроклимата, закреплены в санитарно-гигиенических актах для производственных объектов. В регламенте приводятся гигиенические требования к микроклимату, предусматривающие оптимальные и допустимые значения температуры, скорости движения и влажности воздушной среды. Кроме этого, существуют требования к тепловому облучению для производственных помещений с учетом трудовых нагрузок и времени года.

Выполнение установленных нормативов не всегда возможно на предприятиях, где противоречат технологические требования. В таких случаях соблюдение правил надзорных служб не позволяет достичь экономической целесообразности в работе предприятия. Однако это не значит, что руководители не предпринимают соответствующих мер по созданию благоприятных рабочих условий. В качестве альтернативы практикуется введение мер по защите работающих средствами специальной безопасности.

Оптимальные показатели

Благоприятные микроклиматические условия на производственных объектах в большинстве случаев рассчитываются из показателей рабочего. Оптимальные требования к микроклимату направлены на обеспечение общего и локального ощущения тепловой комфортности в течение восьмичасовой смены. При этом важно, чтобы поддерживалось минимальное напряжение в процессе терморегуляции.

Одним из главных критериев в расчете оптимальных показателей микроклимата является отсутствие факторов, вызывающих отклонения в состоянии здоровья. Кроме этого, производственный микроклимат должен создавать предпосылки для повышения работоспособности людей. Требования распространяются на операторские рабочие места, где функции сотрудника могут быть связаны не только с выполнением технических задач. Это и участки, в работе на которых предусматривается также нервно-эмоциональное напряжение, к примеру, пульты и посты управления, комплексы с вычислительной техникой и кабинеты, откуда оператор управляет технологическими процессами.

Допустимые условия микроклимата

Для формирования условий с допустимыми параметрами используются менее жесткие требования. Так как производственный микроклимат - это совокупность показателей по разным факторам в рабочей среде, крайние показатели нередко становятся единственно возможными. В таких случаях и применяются нормативы с допустимыми значениями. При их соблюдении исключается риск серьезных отклонений в здоровье сотрудников, но влияние на конкретные и общие ощущения в виде дискомфорта, появления плохого самочувствия и снижения работоспособности все-таки возможны. Например, допустимые значения температуры воздушной среды в зависимости от характера рабочего процесса могут составлять от 3 до 5°C, что иногда вызывает дискомфорт, если не предусмотрены специальные средства индивидуальной защиты.

Средства измерения параметров микроклимата

Чтобы определить показатели условий микроклимата, необходимо использовать соответствующие измерительные приборы. Традиционным устройством для контроля температурного режима является термометр, но могут применяться и термографы, с помощью которых фиксируются показатели в определенном промежутке времени. Более широкий перечень устройств используется для определения влажности, на которую также распространяются требования к микроклимату помещений в виде конкретных величин. Это могут быть стационарные и аспирационные а также барометры - анероиды, применяемые и в измерении атмосферного давления.

Профилактика неблагоприятного влияния

Как уже отмечалось, придерживаться требований к микроклимату не всегда возможно, и отклонение от допустимых показателей требует проведения профилактических мероприятий, направленных на устранение вредного влияния. Реализуются они разными средствами, в том числе за счет использования систем воздушного кондиционирования, применения индивидуальных защитных средств от влияния низких и высоких температур и т. д. Поскольку микроклимат - это состояние среды, которая может быть локальной на объекте, нередко практикуется дифференциация помещений на предприятиях в зависимости от характеристик воздуха. Это позволяет обустраивать специальные комнаты отдыха, в которых рабочие нормализуют состояние своего организма.

Лабораторная работа № 4

ИССЛЕДОВАНИЕ МИКРОКЛИМАТА НА РАБОЧЕМ МЕСТЕ

Цель работы: получить представление об основных параметрах микроклимата; изучить принципы нормирования микроклимата в помещениях; исследовать и оценить параметры микроклимата на рабочем месте.

Теоретическая часть

1. Микроклимат и его влияние на организм человека

Микроклимат – это совокупность параметров среды, влияющих на тепловые ощущения человека: температуры, влажности и скорости движения воздуха и интенсивности теплового излучения от окружающих поверхностей, характерных для конкретного помещения.

Микроклимат оказывает существенное влияние на работоспособность человека, его самочувствие и здоровье.

Необходимость учёта параметров микроклимата предопределяется условиями теплового баланса между организмом человека и окружающей средой помещений.

Человек постоянно находится в процессе теплового взаимодействия с окружающей средой. Величина тепловыделений организма человека Q зависит от степени физического напряжения и параметров микроклимата. Для того чтобы физиологические процессы в его организме протекали нормально, выделяемая организмом теплота должна полностью отводиться в окружающую человека среду. Нормальным тепловым ощущениям соответствует равенство между количествами выделяемого организмом человека и отдаваемого в окружающую среду тепла.



Теплообмен между организмом человека и окружающей средой осуществляется с использованием следующих процессов:

· теплопередача (теплопроводность) через одежду Q Т ;

· конвекция Q К ;

· тепловое излучение в окружающее пространство Q ИЗЛ ;

· испарение влаги (пота) с поверхности кожи Q ИСП ;

· дыхание (нагрев вдыхаемого воздуха) Q Д .

Теплопередача (теплопроводность) состоит в передаче тепла от одной частицы к другой при непосредственном контакте.

Конвекция представляет собой процесс теплообмена между телом человека и средой, осуществляемый движущимся воздухом. Конвективный теплообмен зависит от температуры окружающей среды, скорости движения воздуха, его влажности и барометрического давления.

Тепловое излучение представляет собой процесс теплообмена, осуществляемый путем испускания электромагнитных волн инфракрасного диапазона. Тепловые лучи непосредственно воздух практически не нагревают, но хорошо поглощаются твёрдыми телами и, следовательно, нагревают их. Нагреваясь, твёрдые тела сами становятся источниками тепла и уже путём конвекции нагревают воздух.

При температуре окружающей среды, равной или выше температуры поверхности тела человека, теплоотдача происходит только в виде выделения пота, на испарение 1 г которого затрачивается около 0,6 ккал. В состоянии покоя при температуре окружающего воздуха 18 °С доля Q К составляет около 30 % всей отводимой теплоты, Q ИЗЛ » 45 %, Q ИСП » 20 % и Q Д » 5 %.

При изменении температуры воздуха, скорости его движения и влажности, при наличии вблизи человека нагретых поверхностей, в условиях физической работы и т.д. эти соотношения существенно изменяются. Так, при высокой температуре воздуха (30 °С и выше), особенно при выполнении тяжёлой физической работы, потоотделение может усиливаться в десятки раз и достигать 1 – 1,5 л/ч.

Нормальное тепловое самочувствие человека (комфортные условия, соответствующие данному виду деятельности) обеспечивается, если выполняется условие теплового баланса:

Q Ч = Q Т + Q К + Q ИЗЛ + Q ИСП + Q Д,

где Q Ч – количество тепла, генерируемого организмом человека.

Температура внутренних органов человека поддерживается постоянной на уровне около 36,6 °С. Эта способность человеческого организма поддерживать постоянной температуру при изменении параметров микроклимата и при выполнении различной по тяжести работы называется терморегуляцией. Если тепловое равновесие нарушено (например теплоотдача меньше тепловыделений), то в организме происходит накопление тепла – перегрев. Если теплоотдача больше, чем тепловыделение, то происходит переохлаждение организма.

Комфортные метеорологические условия являются важным фактором обеспечения высокой производительности труда и профилактики заболеваний. При несоблюдении гигиенических норм микроклимата снижается работоспособность человека, возрастает опасность возникновения травм и ряда заболеваний, в том числе профессиональных.

Основные параметры микроклимата

Влажность воздуха . Влажность воздуха характеризует степень его насыщения водяными парами. Одна и та же температура воздуха в зависимости от степени его влажности ощущается человеком по-разному. Различают абсолютную и относительную влажность.

Абсолютная влажность (Р АБС ) – это количество водяного пара, содержащегося в 1 м 3 воздуха, т.е. плотность пара (г/м 3). Абсолютную влажность характеризуют также давлением водяного пара (гПа), т. е. парциальным давлением, которое оказывал бы водяной пар на стенки сосуда, если из данного сосуда удалить все другие компоненты воздуха.

Воздух с предельным содержанием водяного пара при данной температуре характеризуется давлением насыщенного пара (Р НАС ), которое увеличивается с повышением температуры воздуха. После достижения Р НАС начинается конденсация водяного пара.

Абсолютная влажность сама по себе не указывает на то, в насыщенном или ненасыщенном состоянии находится водяной пар, поэтому введено понятие относительной влажности.

Относительная влажность (φ ) определяется выражением:

φ = (P АБС /P НАС )·100, %. (1)

Относительная влажность влияет на теплообмен человека, например на интенсивность испарения влаги с поверхности кожи.

Температура воздуха оказывает большое влияние на состояние ор­­га­низма человека. Высокая температура окружающего воздуха повышает утомляемость, может привести к перегреву организма или вызвать тепловой удар. При небольшом перегреве возникают небольшое повышение температуры тела человека, обильное потоотделение, появляется ощущение жажды, учащаются дыхание и пульс. В более тяжёлых условиях может случиться тепловой удар, сопровождающийся повышением температуры до 40 – 41 °С, слабым и учащённым пульсом, потерей сознания. Характерным признаком наступления теплового удара является почти полное прекращение потоотделения. Тепловой удар может привести к смертельному исходу. Низкая температура окружающего воздуха может вызвать местное или общее переохлаждение организма человека, стать причиной простудных заболеваний или обморожения.

Скорость движения воздуха имеет большое значение для создания благоприятных условий жизнедеятельности. При большой скорости движения воздуха увеличивается интенсивность конвективного теплообмена. Если воздушные потоки имеют температуру ниже температуры поверхности кожи (30 - 33 °С), они оказывают освежающее действие на организм человека, а при температуре свыше 37 °С действуют угнетающе. Организм человека начинает ощущать воздушные потоки при скорости около 0,15 м/с.

Тепловое излучение от нагретых поверхностей играет немаловажную роль в создании неблагоприятных микроклиматических условий. Действие лучистого тепла не ограничивается изменениями, происходящими на облучаемом участке кожи, – на облучение реагирует весь организм. В организме возникают биохимические изменения, нарушения в сердечно-сосудистой и нервной системах. При длительном воздействии инфракрасных лучей может возникнуть катаракта глаз (помутнение хрусталика).

Тепловые ощущения человека зависят от сочетания микроклиматических параметров и от напряженности физической работы.

Для оценки комплексного влияния параметров микроклимата на организм человека при малых энергозатратах используется метод эквивалентно-эффективных температур. Этот метод позволяет на основании данных о параметрах микроклимата судить о тепловом состоянии человека. Для его использования введено понятие эквивалентно-эффективной температуры (ЭЭТ ), которая характеризует тепловое ощущение человека при одновременном воздействии температуры, влажности и скорости движения воздуха. ЭЭТ оценивается температурой неподвижного воздуха 100 % -ой относительной влажности, при которой тепловое ощущение человека такое же, как и при заданном сочетании температуры, влажности и скорости движения воздуха.

Область ЭЭТ в интервале температур от 17 до 22 °С соответствует зоне комфорта , внутри которой можно выделить линию комфорта, соответствующую ЭЭТ = 19 °С, при которой почти у всех исследуемых людей возникает ощущение комфорта.

На рисунке приведена номограмма, позволяющая определить влияние параметров микроклимата на тепловое ощущение человека.

3. Нормирование параметров микроклимата

Нормируемыми параметрами микроклимата в производственных помещениях являются: температура воздуха; относительная влажность воздуха; скорость движения воздуха; температура поверхностей помещения (стены, потолок, пол) и технологического оборудования; интенсивность теплового облучения. При нормировании параметров микроклимата учитывают интенсивность энергозатрат работающих (категорию работ по тяжести), период года, время пребывания на рабочих местах .

При этом различают оптимальные и допустимые микроклиматические условия.

Оптимальные микроклиматические условия представляют такие сочетания параметров микроклимата, которые обеспечивают ощущение теплового комфорта в течение 8-часовой рабочей смены при минимальном напряжении механизмов терморегуляции

Допустимые микроклиматические условия могут приводить к ощущению теплового дискомфорта, напряжению механизмов терморегуляции, ухудшению самочувствия и работоспособности. При условии 8-часовой рабочей смены они не вызывают повреждений или нарушений состояния здоровья. Допустимые значения параметров микроклимата устанавливают в случаях, когда по технологическим требованиям, техническим и экономически обоснованным причинам не могут быть обеспечены оптимальные значения.

Номограмма эквивалентно-эффективных температур

В зависимости от энергозатрат в единицу времени работы подразделяются на следующие категории.

¨ Лёгкие физические работы (категория I ) – виды деятельности с интенсивностью энергозатрат до 174 Вт.

К категории относятся работы, производимые сидя, стоя или связанные с ходьбой и сопровождающиеся некоторым физическим напряжением с интенсивностью энергозатрат 140 – 174 Вт.

¨ Физические работы средней тяжести (категория II ) – виды деятельности с интенсивностью энергозатрат 175 – 290 Вт.

К категории IIa относятся работы, связанные с постоянной ходьбой, перемещением мелких (до 1 кг) изделий или предметов в положении стоя или сидя и требующие определенного физического напряжения с интенсивностью энергозатрат 175 – 232 Вт.

К категории IIб относятся работы, связанные с ходьбой, перемещением и переноской тяжестей до 10 кг и сопровождающиеся умеренным физическим напряжением с интенсивностью энергозатрат 233 – 290 Вт.

¨ Тяжёлые физические работы (категория III ) – виды деятельности с интенсивностью энергозатрат с расходом энергии более 290 Вт. Эти работы связаны с постоянными передвижениями, перемещением и переноской значительных (свыше 10 кг) тяжестей и требующие больших физических усилий.

При нормировании различают два периода года: холодный (со среднесуточной температурой наружного воздуха +10 °С и ниже) и тёплый (со среднесуточной температурой наружного воздуха выше +10 °С).

В табл. 1 приведены оптимальные (в скобках – допустимые) значения параметров микроклимата на постоянных рабочих местах производственных помещений.

Интенсивность теплового облучения учитывается, если в производственных помещении имеются источники тепла, нагретые до высокой температуры .



Включайся в дискуссию
Читайте также
Обязательный аудит: критерии проведения Обязательный аудит критерии малое предприятие
Составление смет на проектные и изыскательские работы
Транспортный налог в московской области Ставка по транспортному налогу в году