Подпишись и читай
самые интересные
статьи первым!

Пространственно временного континуума находится. Что такое пространственно-временной континуум? Что есть время

Пространство и время как всеобщие и необходимые формы бытия материи являются фундаментальными категориями в современной физике и других науках. Физические, химические и другие величины непосредственно или опосредованно связаны с измерением длин и длительностей, т.е. пространственно-временных характеристик объектов. Поэтому расширение и углубление знаний о мире связано с соответствующими учениями о пространстве и времени.

Основные положения картины мира, связанные с пространством и временем, заключаются в следующем:

Пространство считалось бесконечным, плоским, "прямолинейным", евклидовым. Его метрические свойства описывались геометрией Евклида. Оно рассматривалось как абсолют­ное, пустое, однородное и изотропное (нет выделенных точек и направлений) и выступало в качестве "вместилища" материальных тел как независимая от них инерциальная система.

Время понималось абсолютным, однородным, равномерно текущим. Оно идет сразу и везде во всей Вселенной "единообразно и синхронно"" и выступает как независимый от материальных объектов процесс длительности. Фактически классическая механика сводила время к длительности, фиксируя определяющее свойство времени "показывать продолжи­тельность события". Значение указаний времени в классической механике считалось абсолютным, не зависящим от состояния движения тела отсчета.

Абсолютное время и пространство служили основой для преобразований Галилея- Ньютона, посредством которых осуществлялся переход кинерциальным системам.Эти системы выступали в качестве избранной системы координат в классической механике.

Принятие абсолютного времени и постулирование абсолютной и универсальной одновременности во всей Вселенной явилось основой длятеории дальнодействия. В качестве дальнодействующей силы выступало тяготение, которое с бесконечной скоростью, мгновенно и прямолинейно распространяло силы на бесконечные расстояния. Эти мгновенные, вневременные взаимодействия объектов служили физическим каркасом для обоснования абсолютного пространства, существующего независимо от времени.

В общей теории относительности Эйнштейн доказал, что структура пространства-времени определяется распределением масс материи. Обычно выделяют всеобщие и специ­фические свойства пространства и времени, а также исследуют особенности пространства и времени в микромире и мегамире. К всеобщим относятся такие пространственно-временные ха­рактеристики, которые проявляются на всех известных структурных уровнях материи и неразрывно связаны с другими ее атрибутами. Специфические, или локальные, свойства прояв­ляются лишь на определенных структурных уровнях, присущи только некоторым классам материальных систем.

Из всеобщих свойств пространства и времени можно всего отметить:

1. Их объективность и независимость от человеческого сознания и сознания всех других разумных существ в мире (если такие есть).

2. Их абсолютность - они являются универсальными формами бытия материи, проявляющимися на всех структурных уровнях ее существования.

3. Неразрывную связь друг с другом и с движущейся материей.

4. Единство прерывности и непрерывности в их структуре наличие отдельных тел. фиксированных в пространстве при отсутствии каких-либо «разрывов» в самом пространстве.

5. Количественную и качественную бесконечность, неотделимую от структурной бесконечности материи невозможность найти место, где отсутствовали бы пространство и время, а также неисчерпаемость их свойств.

К общим свойствам пространства относятся:

1. Протяженность, рядоположенность , существование и связь различных элементов (точек, отрезков, объемов и др.), возможность прибавления к каждому данному элементу неко­торого следующего элемента либо возможность уменьшения числа элементов. Протяженность тесно связана со структурностью материальных объектов; обусловлена взаимодействием между составляющими тела элементами материи. Непротяженные объекты не обладали бы структурой, внутренними связями и способностями к изменениям, из них не могли бы обра­зовываться никакие системы.

2. Связность и непрерывность проявляются в характере перемещений тел от точки к точке, в распространении воздействий через различные материальные поля в виде близко действия в передаче материи и энергии. Связность означает отсутствие каких-либо «разрывов» в пространстве и нарушений в распространении воздействий в полях. Вместе с тем пространству свойственна относительная прерывность, проявляющаяся в раздельном существовании материальных объектов и систем, имеющих определенные размеры и границы, в существовании многообразных структурных уровней материи с различными пространствен­ными отношениями,

3. Трехмерность - общее свойство пространства, обнаруживающееся на всех известных структурных уровнях, органически связано со структурностью систем и их движением. Все материальные процессы и взаимодействия реализуются в пространстве трех измерений (длина, ширина, высота). В одномерном или двумерном пространстве (линия, плоскость) не могли бы происходить взаимодействия частиц и полей. Три измерения являются тем необходимым и достаточным минимумом, в рамках которого могут осуществляться все типы взаимодействий материальных объектов.

4. Пространству на всех известных структурных уровнях материи присуще единство метрических и топологических свойств . Метрические свойства проявляются в протяженности и характере связи элементов тел. Метрика может быть различной - евклидовой и неевклидовой, причем возможно много разновидностей неевклидовых пространств с различными значениями кривизны. Топологические свойства характеризуют связность, трехмерность, непрерывность, неоднородность, бесконечность пространства, его единство со временем и движением.

Рассмотрим теперь общие свойства времени :

1. Длительност ь - выступает как последовательность сменяющих друг друга моментов или состоянии, возникновение за каждым данным интервалом времени последующих. Длитель­ность предполагает возможность прибавления к каждому данному моменту времени другого, а также возможность деления любого отрезка времени на меньшие интервалы. Длительность обусловлена сохранением материи и ее атрибутов, единством устойчивости и изменчивости в мире. Никакой процесс в природе не может происходить сразу, мгновенно, он обязательно длится во времени, что обусловлено конечной скоростью распространения взаимодействий и изменения состояний. Аналогично протяженности пространства длительность относится к метрическим свойствам. Отсутствие же всякой длительности, связанное, например, с состоянием материи тина сингулярности (объект с бесконечной плотностью, гравитационным полем и точечными размерами), означало бы, что материя в этом состоянии не обладает способностью к сохранению и последовательной смене состояний, что равносильно отрицанию всякого материального бытия.

2. Длительность бытия объектов во времени выступает как единство прорывного и непрерывного . Сохраняемость материи и непрерывная последовательность ее изменений, близкодействие в причинных отношениях определяют и непрерывность времени, проявляющуюся в непрерывном переходе предшествующих состоянии в последующие. Прежде чем произойдет какое-либо явление в будущем, должны осуществиться все предшествующие ему изменения, которые его вызывают. Но время как форма бытия материи складывается из множества последовательностей и длительностей существования конкретных объектов, каждый из которых существует конечный период. Поэтому время характеризуется прерывностью бытия конкретных качественных состояний. Но эта прерывность относительна, так как между всеми сменяющими друг друга качествами имеется внутренняя связь и непрерывный переход.

3. Всеобщим свойством времени является необратимое I, означающая однонаправленное изменение от прошлою к будущему. Прошлое порождает настоящее и будущее, переходит в них. К прошлому относятся все те события, которые уже осуществились и превратились в последующие. Будущие события это те, которые возникнут из настоящих и непосредственно предшествующих им событий. Настоящее охватывает все те объекты, системы и процессы, которые реально существуют и способны к взаимодействию между собой. Взаимодействие возможно лишь при одновременном сосуществовании объектов. Объекты, сосуществовавшие в прошлом, но перешедшие в другие последующие состояния материи уже недоступны никакому воздействию.

4. Одномерность времени проявляется в линейной последовательности событий, генетически связанных между собой.

31.Корпускулярная и континуальная концепции описа­ния природы. Единство корпускулярных и волновых свойств микрообъектов.

Одним из наиболее важных вопросов как философии, так и естествознания является проблема материи. Представления о строении материи нашли свое выражение в борьбе двух концепций: прерывности (дискретности) материи – корпускулярная концепция, и непрерывности (континуальности) материи – континуальная концепция. С ними тесно связаны проблемы взаимодействия материальных объектов, которые проявляются как концепции близкодействия (передача действия от точки к точке) и дальнодействия (передача действия без физической среды).

Корпускулярная концепция опирается на идеи Демокрита, отождествившего пространство с пустотой и приписавшего пустоте индивидуальное существование. По Демокриту пространство есть то, что существует само по себе, независимо от материи и является "вместилищем" тел. Оно может быть заполнено телами, а может быть абсолютно пустым в виде особого реального объекта. Ньютон в своей механике эту идею развил до четкого представления об абсолютном пространстве и абсолютном времени, которые не зависят друг от друга и не связаны с материей. Ньютон разработал концепцию прерывности. Его подход основывался на признании дальнодействующих сил. В 1672-1676 годах он распространил атомистику на световые явления и создал корпускулярную теорию света. По своему мировоззрению Ньютон был вторым после Декарта великим представителем механистического материализма в естествознании XVII-XVIII веков. Декарт стремился построить общую картину природы, в которой все явления объяснялись как результат движения больших и малых частиц, образованных из единой материи. Недостатки механистической атомистики:

– отсутствие достоверного экспериментального материала;

– атомы рассматривались как частицы, лишенные возможности превращения;

– единственной формой движения принималось механическое движение.

Сложившиеся к началу XIX века представления о строении материи были односторонними и не давали возможности объяснить ряд экспериментальных фактов. Разработанная М. Фарадеем и Дж. Максвеллом в XIX веке теория электромагнитного поля показала, что признанная концепция не может быть единственной для объяснения структуры материи. В своих работах М. Фарадей и Дж. Максвелл показали, что поле – это самостоятельная физическая реальность. Таким образом, в науке произошла определенная переоценка основополагающих принципов, в результате которой обоснованное Ньютоном дальнодействие заменялось близкодействием, а вместо представлений о дискретности выдвигалась идея непрерывности, получившая свое выражение в электромагнитных полях, т.е. развитие получила континуальная концепция.

Двойственность описание природы особенно проявляется при рассмотрении пространственных и временных свойств материи. На эмпирическом уровне познания мира понятие пространства позволяет описывать порядок сосуществования материальных объектов по признакам "слева – справа", "дальше – ближе", "сверху – снизу", "больше по размерам – меньше". Понятие времени выражает порядок смены событий по признаку "раньше – позже". Пространство и время органически связаны с материей, не могут существовать самостоятельно, обособленно от нее. Основы такого взгляда заложил Аристотель и развил Г. В. Лейбниц (1646-1716). Дальнейшее углубление этого представления о пространстве и времени осуществил Эйнштейн в теории относительности.

В современной физике строго доказано, что пространство и время неразрывно связаны между собой, то есть составляют единое четырехмерное пространство-время и наш мир, следовательно, четырехмерен. Это доказательство осуществлено Эйнштейном в рамках специальной теории относительности. В общей теории относительности установлена количественная связь геометрических свойств (метрики) пространства-времени с материей. Вблизи тяготеющих масс пространство-время "искривляется" и уже не является привычным для нас используемым в классической физике (так называемым эвклидовым). Это представление о четырехмерном пространстве-времени эффективно "работает" в масштабах от размеров видимой Вселенной до размеров элементарных частиц.

Итак, по современным представлениям наш реальный мир четырехмерен: три измерения являются пространственными и одно – временным. Строго показано, что если бы наше геометрическое пространство имело больше 3-х измерений, то планеты, движущиеся вблизи Солнца, и электроны, движущиеся вблизи ядер атомов, не могли бы образовывать устойчивые планетарные и атомные системы. Тем не менее, современные теории, правильно отражающие закономерности в глубоком микромире и ранние стадии эволюции Вселенной, вынуждены оперировать многомерными пространствами. Однако "избыточные" измерения, сыграв свою роль при объяснении тех или иных свойств материи или определенных этапов ее эволюции, неизбежно выпадают из игры.

Установлено, что пространство и время обладают тремя фундаментальными свойствами (тремя видами симметрии ): время однородно, а пространство однородно и изотропно. Изотропность пространства означает, что в любых направлениях его свойства абсолютно одинаковы, то есть пространство обладает симметрией относительно операции поворота. Однородность пространства (симметрия относительно операции сдвига, перемещения) означает абсолютную одинаковость свойств пространства в различных его точках. Аналогичная симметрия времени относительно "сдвига" (выбора момента начала отсчета времени) отражает одинаковость его свойств в прошлом, настоящем и будущем. Перечисленные свойства пространства и времени физически проявляются в одинаковости законов Природы, в различных направлениях во Вселенной, в различных ее местах и в различные моменты времени.

В соответствии с достижениями квантовой физики основополагающим понятием современного атомизма является понятие элементарной частицы, но им присущи такие свойства, которые не имели ничего общего с атомизмом древности, в частности, дуализм свойств. В 1900 г. М. Планк показал, что энергия излучения или поглощения электромагнитных волн не может иметь произвольные значения, а кратна энергии кванта, т.е. волновой процесс приобретает окраску дискретности. Идея Планка о дискретной природе света получили свое подтверждение в области фотоэффекта. Де Бройль открыл примерно в это же время у частиц волновые свойства (дифракция электрона). Таким образом, частицы неотделимы от создаваемых ими полей, и каждое поле вносит свой вклад в структуру частиц, обуславливая их свойства. В этой неразрывной связи частиц и полей можно видеть одно из наиболее важных проявлений единства прерывности и непрерывности в структуре материи. Для характеристики прерывного и непрерывного в структуре материи следует также упомянуть единство корпускулярных и волновых свойств всех частиц и фотонов. Единство корпускулярных и волновых свойств материальных объектов представляет собой одно из фундаментальных противоречий современной физики и конкретизируется в процессе дальнейшего познания микроявлений. Изучение процессов макромира показали, что прерывность и непрерывность существуют в виде единого взаимосвязанного процесса. При определенных условиях макромира микрообъект может трансформироваться в частицу или поле и проявлять соответствующие им свойства.

Вся обстановка в науке в начале XX века складывалась так, что представления о дискретности и непрерывности материи получили свое четкое выражение в двух видах материи: веществе и поле, различие между которыми явно фиксировалось на уровне явлений микромира. Однако дальнейшее развитие науки показало, что такое противопоставление является весьма условным. Было показано, что материя проявляет как непрерывные, так и корпускулярные свойства. Необходимо добавить, что представление о дискретности пространства-времени в современном естествознании все-таки существует, но оно применяется только в связи с объяснением самых ранних этапов эволюции Вселенной.

Пространственно-временной континуум как понятие возник в начале XX века и буквально перевернул представления физиков-теоретиков того времени о природе вещей в нашем мире. Кстати, это новое видение во многом предопределило картину

современного высокотехнологичного мира.

Пространственно-временной континуум и классическая механика

Принципы классической механики были сформированы известнейшим английским ученым Исааком Ньютоном. С момента своего появления в последней четверти XVII века вплоть до конца XIX века его законы, описывающие природные явления, доминировали и считались незыблемыми. Однако рождение во второй половине 1800-х годов электродинамики (науки о распространении и поведении световых и электромагнитных волн) продемонстрировало ее расхождение с ньютоновской моделью. В частности это касалось закона классической механики о сложении скоростей. Например, если два тела движутся навстречу друг другу, то относительно неподвижного объекта каждый из них будет обладать собственной скоростью, но скорость одного относительно другого будет определяться сложением скоростей. Как если ехать в автомобиле

навстречу неподвижному барьеру или приближающемуся по встречной другому автомобилю. Однако эксперименты продемонстрировали, что этот закон никак не подходит к скорости распространения света. Она всегда остается постоянной.

Пространственно-временно континуум и теория относительности

Первым осознать это постоянство смог молодой немецкий физик Альберт Эйнштейн. Он заключил, что постоянство движения света позволяет связать в единую систему движение, пространство и время. Отношение было выражено известной сегодня формулой E=mc2. Однако из этой зависимости вытекал и ряд других положений, предположенных в формулах ученого и проверенных на практике. Так, единый пространственно-временной континуум, предполагавший зависимость одного от другого, означал возможное изменение этих параметров. Для Ньютона обе эти категории были бездейственной ширмой для событий, однако в новой концепции они становились весьма активными их участниками.

Пространственно-временной континуум и его искривление

Не вдаваясь в подробности математических выкладок, необходимо отметить, что

Эйнштейн смог продемонстрировать влияние сил гравитации на эти параметры, буквально искривляющие их. На практике это означает, что вблизи такого массивного тела, как Земля, время замедляет свой ход, а пространство сжимается. В то же время на орбите нашей планеты время течет чуть-чуть быстрее, и сама материя пространства немного менее ускорена. Сегодня это предположение нашло опытное подтверждение со сверхточных часов, установленных на околоземных станциях. Следует учитывать, что расхождения крайне малы, поскольку и гравитационное поле Земли невелико. Но если взять в расчет гораздо более массивные тела, то происходят удивительные вещи. Солнце влияет на временной континуум еще сильнее. А если вообразить, что тело может достичь определенной точки плотности, то и вовсе выйдет, что возле него течение времени почти замирает, а свет из-за гравитации не может вырваться. Такие объекты были названы черными дырами, и их существование неоднократно было подтверждено другими косвенными фактами.

Временной континуум

Совокупность вариантов идиома, представленных во времени, характеризующихся постепенным переходом из одного состояния в другое. Наличие языкового континуума во времени не позволяет установить четкие критерии выделения определенных переходов развития языка и присвоения им соответствующих наименований. Ф. де Соссюр, рассматривая соотношение латыни и французского, указывал на невозможность каких-л. перерывов и скачков в языковой традиции и считал различия между ними чисто номинальными, за которыми стоит один и тот же объект, но изменяющийся во времени. «Французский язык не происходит от латыни, он и есть латынь, на которой говорят в определенную эпоху и в определенных географических границах».


Словарь социолингвистических терминов. - М.: Российская академия наук. Институт языкознания. Российская академия лингвистических наук . Ответственный редактор: доктор филологических наук В.Ю. Михальченко . 2006 .

Смотреть что такое "Временной континуум" в других словарях:

    временной континуум Словарь лингвистических терминов Т.В. Жеребило

    Временной континуум - В социолингвистике: Совокупность вариантов идиома, представленных во времени, характеризующихся постепенным переходом из одного состояния в другое … Общее языкознание. Социолингвистика: Словарь-справочник

    Звёздные врата: Временной континуум - Звёздные врата: Континуум Stargate: Continuum Жанр научная фантастика Режиссёр Мартин Вуд Автор сценария Бред Райт … Википедия

    Звёздные врата: Временной континуум (фильм) - Звездные врата: Континуум Stargate: Continuum Жанр научная фантастика Режиссёр Мартин Вуд Автор сценария Бред Райт В главных ролях Ричард Дин Андерсон Бен Браудер Ам … Википедия

    Cм. Фильм «Назад в Будущее» 1985г. Совокупность событий, фактов, явлений произошедших на определенном отрезке времени. Нарушение ее очень опасно и чревато последствиями, вплоть до катастроф галактического масштаба. Марти, ты не понимаешь,… … Cловарь современной лексики, жаргона и сленга

    пространственно-временной континуум - erdvės ir laiko kontinuumas statusas T sritis fizika atitikmenys: angl. space time continuum vok. Raum Zeit Kontinuum, n rus. пространственно временной континуум, m pranc. continuum spatio temporel, m … Fizikos terminų žodynas

    Пространственно-временной континуум - Общая теория относительности Математическая формулировка ОТО Космология Фундаментальные идеи Специальная теория относительности … Википедия

    Континуум (растительности) - Континуум растительности, непрерывность растительного покрова; проявляется в постепенном переходе от одного растительного сообщества к другому при их соседстве (пространственный К.) и при смене одного сообщества другим во времени (временной К.).… …

    Континуум - I Континуум (от лат. continuum непрерывное) в математике, термин, употребляемый для обозначения образований, обладающих известными свойствами непрерывности (полные формулировки см. в 1 и 2), и для обозначения определённой мощности (см.… … Большая советская энциклопедия

    КОНТИНУУМ РАСТИТЕЛЬНОСТИ - непрерывность растительного покрова, проявляющаяся в постепенном переходе от одного растительного сообщества к другому при их соседстве (пространственный К.) и при смене одного сообщества другим во времени (временной К.) … Словарь ботанических терминов

Книги

  • Шторм времени , Гордон Диксон. Шторм Времени бушует на Земле - бушует, уничтожая миллионы людей - и забрасывая сотни тысяч оставшихся в самые немыслимые эпохи. Пространственно-временной континуум не просто нарушен -…

Опубликовал общую теорию относительности - блестящую, элегантную теорию, которая пережила целый век и открыла единственный успешный путь к описанию пространства-времени (пространственно-временного континуума ).

Есть много различных моментов в теории, указывающих, что общая теория относительности - не последняя точка в истории о пространстве-времени. И в самом деле, пускай мне нравится ОТО как абстрактная теория, однако я пришел к мысли, что она, возможно, на целый век увела нас от пути познания истинной природы пространства и времени.

Я размышлял об устройстве пространства и времени немногим более сорока лет. В начале, будучи молодым физиком-теоретиком, я просто принимал эйнштейновскую математическую постановку задачи специальной и общей теории относительности, а так же занимался некоторой работой в квантовой теории поля, космологии и других областях, основываясь на ней.

Но около 35 лет назад, отчасти вдохновленный своим опытом в технических областях, я начал более детально исследовать фундаментальные вопросы теоретической науки, с чего и начался мой длинный путь выхода за рамки традиционных математических уравнений и использования вместо них вычислений и программ как основных моделей в науке. Вскоре после этого мне довелось выяснить , что даже очень простые программы могут демонстрировать очень сложное поведение, а затем, спустя годы, я обнаружил, что системы любого вида могут быть представлены в терминах этих программ.

Воодушевившись этим успехом, я стал размышлять, может ли это иметь отношение к важнейшему из научных вопросов - физической теории всего.

Во-первых, такой подход казался не слишком перспективным - хотя бы потому, что модели, которые я изучал (клеточные автоматы) , казалось, работали так, что это полностью противоречило всему тому, что я знал из физики. Но где-то в 88-м году - в то время, когда вышла первая версия Mathematica , я начал понимать, что если бы я изменил свои представления о пространстве и времени, возможно, это к чему то бы меня привело.

Простая теория всего?

Из статьи вовсе не кажется очевидным , что теория всего для нашей вселенной должна быть проста. И в самом деле, история физики привносит дополнительные сомнения, ведь чем больше мы узнаем, тем вещи оказываются более сложными, во всяком случае, в терминах математического аппарата, вводимого ими. Но, как отмечалось, к примеру, богословами много веков назад, есть очевидная черта нашей вселенной - в ней есть порядок. Частицы нашей вселенной не просто подчиняются каким-то своим законам, но и подчиняются определённому набору общих законов.

Но насколько простой может быть теория всего для нашей Вселенной? Скажем, мы можем представить её в виде программы, допустим, в Wolfram Language . Насколько большой будет эта программа? Будет ли оно сравнима с длиной человеческого генома, или больше походить по объему на операционную систему? Или же она будет значительно меньше?

Если бы я отвечал на этот вопрос до того, как начал исследовать вычислительную вселенную простых программ, я бы, скорее всего, ответил, что подобная программа должна быть чем то весьма сложным. Однако мне удалось обнаружить, что в вычислительной вселенной даже чрезвычайно простые программы могут демонстрировать сколь угодно сложное поведение (этот факт отражен в общем принципе вычислительной эквивалентности).

Структура данных Вселенной

Но какой должна быть такая программа? Ясно одно : если программа и вправду может быть чрезвычайно простой, то она будет слишком мала для того, чтобы в явной форме кодировать некоторые очевидные особенности нашей Вселенной, такие как массы частиц, разного рода симметрию, или даже пространственную размерность. Все эти вещи должны появляться каким-то образом из чего-то более низкоуровневого и фундаментального.

Но если поведение вселенной определяются простой программой, то какова структура данных, с которыми эта программа работает? Сперва я предположил, что это должно быть нечто простое для описания, как, к примеру, структура клеток, которая появляется в клеточном автомате. Но даже если подобная структура хорошо работает для описания моделей различных вещей , представляется, что она должна быть весьма неправдоподобной для фундаментальных физических моделей. Да, можно найти такие правила, что будут демонстрировать поведение , которое в большом масштабе не будет показывать очевидное свойства структуры. Однако если физика действительно может описываться некоторой простой моделью, то представляется, что столь жёсткая структура для пространства не может быть в неё включена, и что свойства пространства должны из чего-то проистекать.

Так какова альтернатива? Нам потребуется более низкоуровневое понятие, чем пространство, из которого оное и будет рождаться. Также нам потребуется базовая структура данных, которая будет максимально гибкой. Я размышлял об этом много лет, изучая самые разнообразные вычислительные и математические формальные системы. Но в конце концов я понял, что по сути все, с чем я сталкивался, может быть представлено одним способом - с помощью сетей.

Пространство как граф

Так может ли пространство состоять из чего-то подобного ? В классической физике и ОТО пространство не представляется как состоящее из чего бы то ни было. Оно представляется в виде некоторой математической конструкции, которая служит чем-то вроде сцены, на которой имеется непрерывный диапазон возможных положений, занимаемых разными объектами.

Однако можем ли мы точно сказать, что пространство является непрерывным? Когда квантовая механика зарождалась, была популярна идея о том, что пространство, как и всё остальное, квантуется. Но было не ясно, как эту идею можно сопрячь со СТО, собственно, не было и явных доказательств дискретности пространства. Когда я начал заниматься физикой в семидесятых, обсуждение дискретности пространства сошло на нет, плюс экспериментально было доказано, что в масштабах до 10 -18 м (1/1000 радиуса протона, или аттометр) дискретности не наблюдается. Спустя 40 лет и десятки миллиардов долларов, потраченные на ускорители частиц, в масштабах до 10 -22 м (или 100 йоктометров) дискретность пространства так и не обнаружили.

Однако есть мнение, что она должна проявиться в масштабах около планковской длины - 10 -34 метра. Но когда люди размышляют об этом , скажем, в контексте спиновых сетей, петлевой гравитации или чего бы ты ни было, то они склонны предполагать, что всё, что там происходит, тесно связано с формализмами и понятиями квантовой механики.

Но что, если пространство - вероятно, в планковских масштабах - есть лишь старый добрый граф, лишённый квантовых свойств? Звучит не особо впечатляюще, однако для задания подобного графа требуется значительно меньше информации - достаточно просто сказать, какие узлы с какими соединены.

Но как подобное может порождать пространство? Прежде всего, откуда на больших масштабах возникает видимая непрерывность пространства? На самом деле, всё очень даже просто: это может быть следствием большого количество узлов и связей. Немного напоминает то, что происходит в жидкостях - скажем, в воде. В малых масштабах мы можем наблюдать молекулы, мечущиеся в тепловом движении. Однако масштабный эффект заставляет все эти молекулы порождать то, что мы воспринимаем как непрерывную жидкость.

Так получилось, что в середине 80-х я много времени уделял изучению этого феномена - это было частью моей работы, в которой я разбирался в природе кажущейся случайности турбулентных потоков жидкости . В частности, мне удалось показать, что если представить молекулы как клетки клеточного автомата, то их крупномасштабное поведение будет точно описываться дифференциальными уравнениями для потоков жидкости.

И потому, когда я начал размышлять о возможности существования подструктуры пространства, которое можно представить в виде сети, мне подумалось, что здесь можно использовать те же методы, и что это может свести уравнения ОТО Эйнштейна к другим, существенно более низкоуровневым.

Может быть, нет ничего, кроме пространства

Хорошо. Допустим, пространство есть сеть. Но что можно сказать обо всех вещах, располагаемых в пространстве? Что можно сказать об электронах, кварках, протонах и прочем? Стандартные физические представления говорят о том, что пространство есть сцена, на которой располагаются частицы, струны или что бы то ни было. Однако подобное представление становится весьма сложным. Но есть и более простой вариант: возможно, всё в нашей вселенной состоит из пространства.

В последние годы своей жизни Эйнштейн был весьма увлечен этой идеей . Он полагал, что, быть может, такие частицы, как электроны, можно рассматривать как нечто вроде черных дыр, что состоят из одного лишь пространства. Однако, опираясь лишь на формализм ОТО, Эйнштейн не смог развить эту идею, в результате чего она была заброшена.

И, так уж было, что за сотню лет до этого в умах некоторых людей жили подобные идеи. Это были времена до СТО, когда люди думали, что пространство заполнено средой, подобной жидкости - эфиром (по иронии судьбы в настоящее время мы вернулись к модели заполненного пространства - полем Хиггса , квантовыми флуктуациями в вакууме и прочим). Между тем, было понятно, что существуют различные типы атомов, соответствующие различным химическим элементам. И было выдвинуто предположение (в частности, Кельвином), что разным атомам можно сопоставить различные узлы эфира .

Это интересная идея, хоть и неправильная. Но, представляя пространство как сеть, можно рассмотреть схожую идею: возможно, частицы соответствуют определенным структурам сети . Быть может, всё сущее во вселенной есть сеть, а материи соответствуют какие-то структуры этой сети. Подобные вещи легко можно обнаружить на поле клеточного автомата. Даже если каждая клетка подчиняется некоторым простым правилам, в системе появляются определенные структуры со своими свойствами - прямо как частицы с физикой взаимодействия друг с другом.

То, как всё это может реализовываться на сетях - отдельная и очень большая тема. Однако сперва нам стоит обсудить одну очень важную вещь - время.

Что есть время?

В 19-ом веке были понятия пространства и времени. Оба описывались координатами, а с помощью некоторых математических формализмов появлялись схожим путем. Однако мысль о том, что пространство и время в некотором роде есть одно и то же, не была в ходу. Но потом появился Эйнштейн с ОТО, и люди начали говорить о пространстве-времени , в котором пространство и время есть грани некоего единого понятия.

Оно вносит множество смыслов в СТО, в которой, к примеру, перемещение с переменной скоростью есть суть вращение в четырехмерном пространстве-времени. И весь этот век физики полагали пространство-время некоей сущностью, в которой пространство и время не имеют фундаментальных различий.

Но теперь все становится немного сложнее. Ведь может быть много мест в сети, где можно применить подобное правило. Так что определяет порядок обработки каждого фрагмента?

По сути, каждое возможное упорядочение соответствует своему временному потоку. И можно было бы вообразить теорию, в которой все потоки имеют место быть, и наша вселенная имеет множественную историю .

Но мы можем обойтись и без этой гипотезы. Вместо этого, вполне возможно, существует лишь одна нить времени - и это хорошо соотносится с тем, что мы знаем о мире, с нашим опытом. И чтобы понять это, нам следует сделать нечто наподобие того, что сделал Эйнштейн, формулируя СТО: нам следует ввести более реалистичную модель того, чем может являться наблюдатель.

Излишне говорить, что какой-либо реальный наблюдатель должен иметь возможность существовать в нашей вселенной. Таким образом, если вселенная представляет собой сеть, то наблюдатель должен быть некоей частью этой сети. Вспомним теперь о постоянных небольших изменениях, которые происходят в сети. Чтобы знать, что подобное изменение (обновление) произошло, наблюдатель и сам должен быть изменен (обновлен).

И тут вещи приобретают интересный оборот. Если сеть ведет себя как неискаженное в пространстве большей размерности d -мерное пространство, то число узлов всегда будет около r d . Но если поведение подобно искривленному пространству (как в ОТО), то будет иметь место поправочный член, пропорциональный такому математическому объекту, как тензор Риччи . И это весьма интересно, ведь тензор Риччи как раз и возникает в уравнениях Эйнштейна.

Тут много математических сложностей. Следует рассмотреть кратчайшие пути - геодезические линии сети. Следует понять, как сделать что бы то ни было не только в пространстве, но и на сети с течением времени. Так же следует понять то, до каких масштабов проявляются свойства сети.

При выводе математических результатов важно иметь возможность получать разного рода средние значения. По сути, это подобно выведению уравнений для жидкости из динамики молекул: нужно иметь возможность принимать среднее из некоторого диапазона случайных значений в низкоуровневых взаимодействиях.

Но хорошая новость заключается в том, что существует необъятное количество систем, построенных даже на чрезвычайно простых правилах, которые подобны цифрам числа пи , то есть для любых прикладных целей являются достаточно случайными . Получается, что даже если особенности причинной сети полностью определены для того, кто знает исходное состояние сети, то большая часть этих особенностей будут являться, по сути, случайными.

Вот что имеем в итоге. Если ввести предположение об эффективной микроскопической случайности и предположить, что поведение системы в целом не приводит к изменению во всех ограничивающих размерностях, то из этого следует, что масштабное поведение системы удовлетворяет уравнениям Эйнштейна !

Полагаю, это очень интересно. Уравнения Эйнштейна можно получить практически из ничего. Это означает, что эти простые сети воспроизводят черты гравитации, которые мы знаем из современной физики.

Есть ряд деталей, которые не подходят под формат этой статьи. Многие из них я озвучивал довольно давно в NKS , особенно в заметках в конце.

Некоторые из вещей, возможно, стоит упомянуть. Во-первых, стоит отметить, что эти базисные сети не только представляются в обычном непрерывно определенном пространстве, но и не определяют такие топологические понятия, как внутри и снаружи. Все эти понятия являются следствием и выводятся.

Когда дело доходит до вывода уравнений Эйнштейна, тензоры Риччи рождаются из геодезических линий на сети вместе с ростом сфер, которые берут начало из каждой точки на геодезической линии.

Полученные уравнения Эйнштейна являются уравнениями Эйнштейна для вакуума. Но как и в случае с гравитационными волнами, можно эффективно отделить особенности пространства, связанные с материей, а затем получить полные уравнения Эйнштейна в терминах материи-энергии-импульса.

Когда я пишу это, то понимаю, насколько легко скатываюсь к «языку физиков» (вероятно, это связано с тем, что я занимался физикой в молодости...). Но достаточно просто сказать, что на высоком уровне появляется захватывающая вещь, которая заключается в том, что из простой идеи о сетях и причинно-следственно инвариантных правил замены можно вывести уравнения ОТО. Сделав удивительно мало, мы получаем яркую звезду физики 20-го века: общую теорию относительности.

Частицы, квантовая механика и прочее

Весьма здорово - иметь возможность вывести ОТО. Но на этом физика не заканчивается. Другой очень важной её частью является квантовая механика . Боюсь, я не смогу в рамках этой статьи подробно развернуть эту тему, но, по-видимому, такие частицы, как электроны, кварки или бозоны Хиггса должны представляться в виде некоторых особых областей сети. В качественном смысле они могут не сильно отличаться от «эфирных узлов» Кельвина.

Но тогда их поведение должно следовать правилам, которые мы знаем из квантовой механики - или, если более конкретно - из квантовой теории поля. Ключевой особенностью квантовой механики является то, что она может быть сформулирована в терминах множественных поведений, каждое из которых связано с определенной квантовой амплитудой. Я не до конца со всем этим разобрался, однако есть намек на то, что нечто подобное происходит, если смотреть на эволюцию сети с различными возможными последовательностями низкоуровневых замен.

Моя сетевая модель, говоря строго, не имеет никаких квантовых амплитуд. Она больше похожа (но не в точности) на классическую, по сути, вероятностную модель. И в течение полувека люди считали, что с подобными моделями сопряжены практически нерешаемые проблемы. Ведь есть такая теорема Белла, в которой говориться, что если нет мгновенных нелокальных распространений информации, то не найдется и такой модели «скрытых переменных», что сможет воспроизвести квантово-механические результаты, наблюдаемые экспериментально.

Но есть принципиальные замечания. Вполне себе ясно, что означает нелокальность в обычном пространстве некоторой размерности. Но что можно сказать в контексте сетей? Тут всё по-другому. Потому что все определяется одними лишь связями. И хоть сеть и может в больших масштабах представляться трехмерной, остаётся возможность, что есть некие «нити», соединяющие некоторые области, которые без оных были бы отделены друг от друга. И мне не даёт покоя одна мысль - есть основания полагать, что эти нити могут генерироваться подобными частицам структурами, распространяющимися в сети.

В поисках вселенной

Хорошо, получается, что некоторые модели на основе сетей могут воспроизвести модели современной физики. Но с чего стоит начать поиск модели, в точности воспроизводящей нашу вселенную?

Первая мысль - начать с существующей физики и попытаться адаптировать инженерно-прикладные правила так, чтобы воспроизвести её. Но единственный ли это путь? А что если просто начать перечислять все возможные правила, ища среди них те, что будут описывать нашу вселенную?

Не начав изучение вычислительной вселенной простейших программ, я бы подумал, что это безумная затея: правила нашей вселенной никак не могут быть достаточно простыми для того, чтобы их можно было бы найти простым перечислением. Но увидев, что творится в вычислительной вселенной и увидев некоторые другие примеры, в которых потрясающие вещи были найдены одним лишь перебором, я понял, что ошибаюсь.

Но что будет, если кто-то действительно начнет осуществлять подобный поиск ? Вот подборка сетей, полученных после довольно небольшого числа шагов, используя все возможные правила определенного, весьма простого типа:

Некоторые из этих сетей явно не соответствуют нашей вселенной. Они просто замирали спустя несколько итераций, то есть время в них, по сути, останавливалось. Или структура их пространства была слишком простой. Или у них было бесконечное число измерений. Или какие-то другие проблемы.

Здорово, что с такой удивительной быстротой мы можем найти те правила, которые явно не соответствуют нашей вселенной. А сказать то, что именно этот объект - наша вселенная, является значительно более сложной задачей. Потому что даже если смоделировать большое количество шагов, то невероятно сложно будет показать то, что поведение этой системы демонстрирует то же самое, что говорят нам физические законы о ранних моментах жизни вселенной.

Хотя есть ряд обнадеживающих вещей. Например, эти вселенные могут рождаться с фактически бесконечным числом измерений, а затем постепенно сжиматься до конечного числа измерений, потенциально устраняя необходимость в явной инфляции в ранней Вселенной.

А если рассуждать на более высоком уровне, то следует помнить, что если использовать весьма простые модели, то будет иметь место большое расстояние между «соседними моделями», так что, скорее всего, эти модели будут либо точно воспроизводить известные физические построения, либо будут далеки от истины.

В конце концов, нужно воспроизвести не только правила, но и начальное состояние вселенной. И как только мы узнаем его, то мы принципиально сможем узнать точную эволюцию вселенной. Так означает ли это, что можно было бы сразу узнать все о вселенной? Однозначно нет. Из-за явления, которое я называю «вычислительной несводимостью» , и которое подразумевает, что если знать правила и начальное состояние для системы, она по-прежнему может требовать неприводимое количество вычислительной работы для прослеживания каждого шага системы в выяснения того, что она делает.

Тем не менее, существует вероятность, что кто-то сможет найти простое правило и начальное состояние, сказав: "Смотрите-ка, это наша вселенная! " Мы нашли бы нашу вселенную в пространстве всех возможных вселенных.

Конечно, это было бы знаменательным днём для науки.

Но возникло бы множество других вопросов. Почему именно это правило, а не другое? И почему наша Вселенная должна иметь правило, которое появляется достаточно рано в нашем списке всех возможных вселенных, и которое мы можем найти простым перечислением?

Можно было бы подумать, что именно особенности нашей вселенной и тот факт, что мы в ней находимся, заставят нас сформировать правила перечисления так, что вселенная появится достаточно рано. Но в настоящее время я полагаю, что всё должно быть значительно более экстравагантно, как, например, в случае с наблюдателем во вселенной - все из большого класса нетривиальных возможных правил для вселенных в действительности эквивалентны, потому можно выбрать любое из них и получить точно такие же результаты, просто по-другому.

Ок, покажите мне Вселенную

Но всё это лишь догадки. И пока мы и в самом деле не найдем кандидата на правило нашей вселенной, вероятно, на обсуждение этих вещей не стоит тратить много времени.

Так, хорошо. Какова наша текущая позиция во всем этом? Большую часть из того, что сейчас обсуждалось, я понял где-то в 99-ом - за несколько лет до окончания A New Kind of Science . И хоть я и писал на простом языке, а не в формате статьи по физике, мне удалось покрыть основные моменты этой темы в девятой главе книги, добавив некоторые технические детали в примечаниях в конце.

Но после того, как в 2002 году книга была закончена, я снова начал работать над физическими проблемами . Будет забавным сказать, что в моём подвале стоял компьютер, который искал фундаментальную физическую теорию. Но вот что на самом деле он делал: перечислял возможные правила различных типов и пытался обнаружить соответствие их поведения определенным критериям, которые могли бы сделать их правдоподобными в качестве моделей физики.

Я весьма скрупулёзно проделывал это работу, черпая идеи из простых случаев, последовательно продвигаясь к более реалистичным. Было много технических вопросов. Как представлять большие эфолюционирующие последовательности графов. Или как быстро распознавать слабоуловимые закономерности, которые показывают, что правило не соответствует нашей вселенной.

Работа разрослась на тысячи страниц, если её представлять в печатной форме, постепенно приближая к пониманию основ того, что могут делать системы, основанные на сетях.

В некотором смысле это было чем-то вроде хобби, которым я занимался параллельно с текучкой по управлению компанией и ее технологическим развитием . И был еще один отвлекающий фактор. В течение многих лет я занимался проблемой вычислительных знаний и построением движка, который мог бы всесторонне их реализовывать. И по результатам моей работы над A New Kind of Science я убедился, что это возможно, и что сейчас подходящее время для реализации этого.

К 2005 году стало ясно, что это действительно возможно реализовать, и потому я решил посвятить себя этому направлению. В результате получилась Wolfram|Alpha . И как только Wolfram|Alpha была запущена, то стало ясно, что можно сделать значительно большее - и я посвятил своё, пожалуй, наиболее продуктивное десятилетие на создание огромной системы из идей и технологий, которая дала возможность реализовать Wolfram Language в его нынешнем виде, а так же множество других вещей.

Заниматься физикой или нет - вот в чем вопрос

Но в течение этого десятилетия я не занимался физикой. И когда сейчас я смотрю на файловую систему на своем компьютере, я вижу большое количество ноутбуков с материалами по физике, сгруппированные с полученными мною результатами, и все это оставалось брошенным и нетронутым с начала 2005 года.

Должен ли я вернуться к вопросам физики? Я определенно хочу этого. Хотя есть и другие вещи, которые я хотел бы реализовать.

Я провел большую часть своей жизни, работая над очень большими проектами. И я упорно трудился, планируя то, что собираюсь сделать, пытаясь их распланировать на ближайшее десятилетие. Иногда я откладывал проекты, потому что существующие на тот момент технологии или инфраструктура были ещё не готовы к ним. Но как только я приступал к работе над проектом, я давал себе обещание найти способ его успешно завершить, даже если для его реализации потребуется много лет напряженной работы.

Однако поиск фундаментальной физической теории, пожалуй, несколько отличается от проектов, над которыми мне приходилось работать раньше. В некотором смысле критерии его успеха гораздо жестче: он или решает проблему и находит теорию, или нет. Да, можно было бы найти множество интересных абстрактных понятий из формирующийся теории (как в теории струн). И вполне вероятно, что такое исследование даст интересные побочные результаты.

Но в отличие от создания технологий или исследования научных областей, формулирование содержания этого проекта вне нашего контроля. Его содержание определяется нашей вселенной. И, вполне возможно, я просто ошибаюсь в предположениях о том, как работает наша вселенная. Или, быть может, что я прав, но есть практически непреодолимый барьер из-за вычислительной несводимости, который лишает нас возможностей познать эту сферу.

Кто-то может сказать, что есть вероятность того, что мы найдем некоторую вселенную, которая будет походить на нашу, но мы так никогда и не узнаем, наша ли она в действительности. Я, на самом деле, не особо беспокоюсь об этом. Я думаю, что есть достаточное количество аномалий в существующей физике, приписываемых таким вещам, как темная материя, объяснение которых даст нам полную уверенность в том, что мы нашли верную теорию. Будет здорово, если можно будет сделать предположение и быстро проверить его. Но к тому времени, как мы выведем все, казалось бы, произвольные массы частиц, и другие известные особенности физики, можно будет быть уверенным, что мы имеем дело с верной теорией.

Было занятно в течение многих лет спрашивать у своих друзей, должен ли я заниматься фундаментальными вопросами физики. И получал я три совершенно разных типа ответов.

Первый - простой: "Ты должен заниматься этим! " Они говорили, что проект является самым увлекательным и важным из тех, что можно себе вообразить, и не могут понять, зачем ждать ещё хоть один лишний день, прежде чем к нему приступить.

Второй тип ответов: "Зачем тебе этим заниматься? " Затем они говорят нечто вроде «Почему бы не решить проблему искусственного интеллекта, или молекулярной инженерии, биологического бессмертия, или, по крайней мере, не построить огромную многомиллиардную компанию? Зачем заниматься чем-то столь абстрактным и теоретическим, когда можно сделать что-то насущное и изменить тем самым мир?»

А есть третий тип ответов - весьма ожидаемый, если иметь в виду историю науки. В основном он исходит от моих друзей-физиков, и это некая комбинация из "Не трать своё время на это! " и "Пожалуйста, не надо этим заниматься ".

Дело в том, что нынешний подход к фундаментальной физике, основанный на теории квантового поля, насчитывает почти 90 лет. Он имел ряд успехов, однако не привел нас к фундаментальной физической теории. Но для большинства современных физиков нынешний подход и есть суть сама физика. И когда они слышат о том, над чем я работаю, им это кажется чем-то столь незнакомым, будто это на самом деле и не физика.

И некоторые из моих друзей прямо так и говорят: "Я надеюсь, что у тебя ничего не получится, потому что тогда все, над чем я работал, пойдет коту под хвост ". Ну, да, многое из сделанного окажется бессмысленным. Но вы всегда сталкиваетесь с этим риском, когда занимаетесь проектом, в котором природа решает что верно, а что нет. Но я должен сказать, что даже если можно будет найти по-настоящему фундаментальную физическую теорию, то останется ещё очень большое поле для работы квантовой теории поля, к примеру - объяснение различных эффектов на масштабах, с которыми мы работаем в настоящее время на ускорителях частиц.

Что требуется?

Так, хорошо, если я запущу проект по поиску фундаментальной физической теории, то что мне следует делать? Это сложный проект, которому потребуюсь не только я, но также и разнородная группа талантливых людей.

Будет ли он в конечном счете работать - не знаю, но думаю, что будет довольно интересно за ним наблюдать, и я планирую представить его в прозрачном формате, сделав его максимально доступным и познавательным (конечно, это будет ободряющим контрастом с тем режимом отшельника, в котором я работал над A New Kind of Science в течение десяти лет).

Безусловно, я не могу знать, насколько сложен этот проект, и принесет ли он вообще результаты. В конечном счете это зависит от того, какова есть на самом деле наша вселенная. Но, основываясь на том, что я сделал десять лет назад, у меня есть четкий план относительно того, с чего начать и каких людей свести вместе в рамках одной команды.

Тут потребуются как хорошие учёные, так и прикладники/инженеры. Потребуется проделать много работы в области разработки алгоритмов эволюции сетей и их анализа. Я уверен, что тут потребуется теория графов, современная геометрия, теория групп и, возможно, некоторые другие разделы абстрактной алгебры. И я не удивлюсь, если в итоге будут задействовано большое количество других областей математики и теоретической информатики.

Тут потребуется сложная и серьёзная физика, с понимаем основ квантовой теории поля, теории струн и, возможно, таких разделов, как спиновые сети. Также, вероятно, потребуются методы статистической физики и её современных теоретических основ. Потребуется понимание общей теории относительности и космологии. И, если дела идут хорошо, потребуется работа над большим количеством разнообразных физических экспериментов, а также их интерпретация.

Будут и технические проблемы - понять, к примеру, то, как проводить огромную вычислительную работу по сетям и визуализировать получаемые результаты. Но я подозреваю, что самые большие проблемы будут в строительстве здания новой теории и понимании того, что необходимо для изучения различных видов сетевых систем, которые я хочу исследовать. Будет не лишней поддержка из существующих ныне областей. Но, в конце концов, подозреваю, потребуется построение существенно новой интеллектуальной структуры, которая не будет похожа ни на что из того, что имеется сейчас.

Но пришло ли время?

Подходящее ли сейчас время для реализации подобного проекта? Может быть, следует подождать, пока компьютеры получат больше вычислительных возможностей. Или когда некоторые области математики продвинутся дальше. Или пока не будут получены ответы на еще несколько вопросов из физики.

Я не уверен. Но я и не вижу никаких непреодолимых препятствий, а лишь то, что на этот проект потребуются усилия и ресурсы. И кто знает: может быть, это окажется проще, чем мы думаем, и мы, оглядываясь назад, будем задаваться вопросом - почему этого никто не сделал ранее.

Одним из ключевых моментов, который привел к общей теории относительности 100 лет назад, заключался в том, что пятый постулат Евклида («параллельные линии никогда не пересекаются») может и не выполняться в реальной вселенной, давая возможность существования искривленного пространства. Но если мои подозрения о космосе и вселенной верны, то это означает, что на самом деле есть и более фундаментальная проблема в основаниях Евклида - в самых первых его определениях. Ведь если существует дискретная подпространственная сеть, то предположения Евклида о точках и линиях, которые могут занимать любые пространственные положения, попросту не верны.

ОТО - отличная теория, но мы уже знаем, что она не может быть окончательной. И теперь мы должны задаться вопросом - сколько пройдет времени, прежде чем мы придем к окончательной теории. Надеюсь, не слишком много. И я надеюсь, что ОТО отпразднует не слишком много юбилеев прежде, чем мы узнаем, что же есть пространство-время на самом деле.

Итак, что известно по этой теме...



Современная наука допускает несколько возможных способов путешествия в будущее (строго говоря, любой человек путешествует в будущее, даже когда он просто лежит на диване, так что речь идет об ускоренном путешествии):

  1. Физический (на основе следствий теории относительности):
    • Движение со скоростью, близкой к скорости света. Время путешествия, измеренное по часам того, кто двигался с такой скоростью, всегда меньше измеренного по часам того, кто оставался неподвижен («парадокс близнецов»).
    • Нахождение в области сверхвысокой гравитации, например вблизи горизонта событий чёрной дыры.
  2. Биологический - остановка метаболизма тела с последующим восстановлением. Например, замораживание (крионика).

Способы путешествия в прошлое

Есть несколько гипотетически возможных способов попасть в прошлое:

  1. Общая теория относительности допускает возможность существования «кротовин» (английский термин wormhole - червоточина). Это нечто вроде туннелей (возможно, очень коротких), соединяющих удалённые области в пространстве. Разрабатывая теорию кротовин, К. Торн и М. Моррис заметили, что если перемещать один конец (А) короткой кротовины с большой скоростью, а потом приблизить его к другому концу (Б), то - в силу вышеупомянутого «парадокса близнецов» - объект, попавший в момент времени T во вход А, может (см. ниже) выйти из Б в момент, предшествующий T (таким способом, однако, невозможно попасть во время, предшествующее созданию машины времени).
    Из уравнений Эйнштейна следует, что кротовина схлопнется раньше, чем путешественник сумеет пройти через неё (как, например, в случае «моста Розена-Эйнштейна» - первой описанной кротовины), если её не будет удерживать от этого так называемая «экзотическая материя» - материя с отрицательной плотностью энергии. Существование экзотической материи подтверждено как теоретически, так и экспериментально (эффект Казимира).
  2. В 1936 г. Ван Штокум нашёл, что тело, вращающееся вокруг массивного и бесконечно длинного цилиндра, попадёт в прошлое (позже Ф. Типлер предположил, что это возможно и в случае цилиндра конечной длины). Таким цилиндром могла бы быть так называемая космическая струна, но нет надёжных свидетельств, что космические струны существуют, и вряд ли есть способ создавать новые.
  3. Можно, наконец, вообще ничего не предпринимать, а просто дождаться пока машина времени образуется сама собой. Не видно никаких оснований ожидать, что это произойдёт, но важно, что если она все же образуется, то это не войдет в противоречие ни с какими известными законами природы. Простейшая модель такой ситуации - машина времени Дойча-Политцера.


Есть несколько часто упоминаемых аргументов против путешествий в прошлое:

1) Нарушение причинно-следственных связей.

2) «Парадоксы». Допустим, некто в 11 утра заряжает пистолет, в 11.30 создаёт машину времени и в полдень (12.00) входит в неё. Затем, пользуясь свойствами машины времени, он возвращается к моменту 11.50, поджидает, пока его более молодая версия приблизится ко входу, и пытается её убить. Он, конечно, не может в этом преуспеть - человек способен выстрелить только при условии, что он пережил состоявшееся час назад (по его часам) покушение. Возникает, однако, вопрос: что именно помешает ему (и всем его последователям)? Не приходим ли мы в некоторое противоречие с привычными представлениями о свободе воли?

Иногда парадоксом называют и другую ситуацию, которая формулируется, например, так («парадокс убитого дедушки»): если внук вернётся в прошлое и убьёт собственного деда, его рождение окажется невозможным; но если он не родится, то деда никто не убьёт, и его рождение окажется возможно. Что же произойдёт в действительности? Здесь, однако, никакого парадокса нет, также как и никакой неопределенности. Слова «человек» (или «внук») и «человек, чей дедушка не был убит в колыбели» суть синонимы.

3) Отсутствие в нашем времени пришельцев из будущего.

В науке первая проблема не рассматривается (машина времени и нарушение причинно-следственных связей - это просто синонимы, здесь нет темы для обсуждения). Решение второй было найдено лишь недавно. Суть идеи в том, что при создании машины времени возникает крайне нетипичная для классической физики неопределённость: как бы хорошо мы ни знали начальные данные, мы не можем однозначно предсказать эволюцию пространства-времени. Причём среди бесконечно большого числа возможных вариантов всегда есть такой, в котором машина времени не появляется. Таким образом, если мы видим человека, пытающегося построить машину времени, то тот факт, что он вооружён и полон решимости через час выстрелить, не означает, что свободная воля этого человека будет вскоре чем-то ограничена. В лучшем случае он означает лишь, что одна возможность (из бесконечного количества) исключена - в течение часа машина времени в этом месте не появится.

1) Последовательность событий неизменна.

1.Путешествия в прошлое управляемы, но никакими действиями изменить ход истории невозможно. Примером такого подхода является «Ошибка Риллена Ли» Юрия Нестеренко. «Если некоторый факт существует во времени, то как бы вы ни старались его изменить, результатом всех ваших усилий оказывается именно этот факт.» Такое явление фантаст Джон Уиндем назвал «хроноклазм». Например, в романе Л. Лагина «Голубой человек» (1964) на интересы, воспитание, судьбу главного героя - воспитанника советского детского дома - в 1959 году оказывает влияние старая большевичка-преподавательница; герой попадает в Москву 1894 года и сам, в свою очередь, воспитывает и определяет судьбу девятилетней девочки в революционных интересах; она становится революционеркой и потом воспитывает его самого в детском доме. Аналогичным «хроноклазмом» можно считать «Парадокс Фрая», в котором человек, отправившись в прошлое, становится биологическим дедом самому себе.

2.Путешествия в прошлое неуправляемы. Например, в цикле «Конец Времени» Майкла Муркока при попытке нарушить причинно-следственную связь путешественник возвращается в свое время. В повести Сергея Лукьяненко «Пристань жёлтых кораблей» результатом путешествий во времени становятся временные разломы, внезапно и непредсказуемо перебрасывающие область пространства в прошлое или будущее.

3.При перемещении во времени путешественник ещё и перемещается в пространстве. Например, при перемещении на 1 год назад он перемещается на 1 световой год (ровно то расстояние, с которого он не сможет повлиять на события точки отправления). Из этих рассуждений следует, что путешествовать можно только через искривления пространства-времени, то есть через червоточины.

2) Последовательность событий изменяема.
1.Каждое путешествие в прошлое создает новую реальность, так что парадоксы не имеют места. В старой реальности ничего не меняется, кроме того, что путешественник во времени бесследно исчезает. Так, убийство дедушки приведёт к тому, что возникнет новая реальность, где путешественник во времени не рождался, а его дед был убит; параллельно ей останется старая реальность, где с дедом ничего не случилось.

2.Вариант предыдущего: новая реальность появляется при изменении, но через какое-то время события естественным образом приводят измененную реальность в соответствие с неизмененной. Таким образом, в истории появляется не «стрелка», а «параллельный отрезок», который в какой-то момент снова стыкуется с основным путём. Наглядный пример - смерть героини в фильме «Машина времени» («Time machine»). Впрочем, с точки зрения современной физики наличие возможности соединить несколько прошлых в одно будущее весьма сомнительно.

3.Каждое путешествие в прошлое мгновенно переписывает старую реальность в новую. Люди и предметы из старой реальности бесследно исчезают (если они не существуют в новой реальности) или изменяются (если они в ней существуют). Сам путешественник во времени не меняется. Примером такого подхода является «Конец вечности» Айзека Азимова или серия «Южного парка» «Вперёд, Бог, вперёд XII». Фантаст Ларри Нивен высказал идею, что в этом случае реальность будет изменяться до тех пор, пока не достигнет состояния, при котором путешествия во времени никогда не будут открыты. Такое состояние является стабильным. Так и произошло в «Конце вечности».

1.Перезапись может действовать и на самих путешественников во времени, как это происходит в рассказе Юрия Нестеренко «Клятва Гиппократа». Поскольку меняются и их воспоминания, сами они не замечают ни изменения внешнего мира, ни собственные изменения.
2.Перезапись может быть не мгновенна, а занимать некоторое время. Такой вариант показан в фильме «Назад в будущее» и игре «Chrono Trigger». В данной теории человек, отправившийся в прошлое и сделавший свое рождение невозможным, через некоторое время исчезнет, причем не его двойник, а именно он сам.

3) Последовательность событий ограниченно изменяема: лишь до тех пор, пока события не влияют на самого путешественника во времени. Так, путешественник во времени не может убить своего деда. Он также не может изменить те события, которые, как ему известно, произошли.

Вот некоторые способы решить третью проблему (впрочем, на этот «парадокс» всегда можно возразить тем, что мы не можем знать наверняка о несуществовании чего-либо).

1.Предполагается, что в будущем путешествия в прошлое запрещены, а те люди, кто всё-таки попадает в наше время, стараются ничем не выдавать своего присутствия (Асс, Бегемотов «Вперёд в прошлое»).

2.Согласно ещё одной гипотезе, путешествовать в прошлое можно лишь до времени изобретения машины времени, но не раньше. И то, что наше время не заполнено пришельцами из будущего, свидетельствует лишь о том, что машина времени пока еще не изобретена, а не о том, что путешествия в прошлое невозможны.

3.Путешествия в прошлое не запрещены и путешественников из будущего в нашем времени много, но они не могут или скорее не хотят изменять прошлое, поскольку единственным следствием этого будет размножение реальностей, что не позволит путешественникам вернуться в свою исходную реальность в будущем. Таким образом, внесение изменений в прошлое просто бессмысленно, за исключением случаев специального проектирования нужной реальности. Этот вариант рассматривается, например, в фантастическом романе А. Махрова «В вихре времён».

В 1948 г. Курт Гёдель нашел решение для составленных Эйнштейном уравнений гравитационного поля, описывающих вращающуюся Вселенную. Путешествуя в пространстве такой Вселенной, космонавт может достичь своего прошлого. ... В такой Вселенной свет (и, соответственно, причинно-следственная связь между объектами) будет вовлечен во вращательное движение, что позволит материальным объектам описывать траектории, замкнутые не только в пространстве, но и во времени. Пожав плечами, решение Геделя отложили в сторону как математический парадокс - в конце концов, нет свидетельств того, что вся наша Вселенная вращается. Тем не менее полученный Геделем результат показал, что теория относительности не исключает перемещения назад во времени. Более того, сам Эйнштейн был озадачен этим фактом.

Считается, что при нынешнем технологическом уровне машину времени построить невозможно. Однако, время от времени в печати появляются сообщения о секретных экспериментах по перемещению во времени, якобы проводимых военными.


Наиболее известны два таких «эксперимента»:

  1. Филадельфийский эксперимент (проект «Радуга», Philadelphia Experiment). Якобы в 1943 году на базе ВМС США в Филадельфии изучали проблему невидимости военных кораблей для радаров. Руководил проектом Джон фон Нейман. В ходе этих исследований был создан «электромагнитный пузырь» - экран, который отводил излучение радаров мимо корабля. Однажды в ходе этих экспериментов «электромагнитным пузырём» был окружён военный корабль «Элдридж», который вдруг исчез у всех на глазах, а потом возник на удалении в сотни миль в Норфолке (штат Виргиния). Команда корабля уверяла, что они побывали в будущем. Комиссия признала всех членов команды сумасшедшими, а проект был закрыт. (Подробнее см. ст. Что случилось с эсминцем «Элдридж»?).
  2. Проект Montauk (проект «Феникс»). Исследования, которые якобы проводились с 1943 года по 1983 год на военной базе США рядом с городом Монтаук (штат Нью-Йорк). В ходе этих экспериментов испытуемым облучали мозг высокочастотными радиоимпульсами, что приводило к возникновению у них различных галлюцинаций. Многие испытуемые сообщали, что они побывали в будущем. После того, как несколько испытуемых сошли с ума, проект был закрыт (см. ст. «Монтаук: Эксперименты со временем» .).

Высока вероятность, что сообщения о подобных экспериментах являются лишь выдумками журналистов и/или людей с неуравновешенной психикой (см. ст. Тайна корабля-невидимки «Элдридж» разгадана .) Но некоторые люди верят, что реальные события были приукрашены выдумками, чтобы они не привлекли внимания военных Советского Союза.

По мнению некоторых сторонников существования паранормальных явлений, сам человек является природной машиной времени и может совершать путешествия во времени. В рамках данных представлений составляются каталоги геологических и палеонтологических находок, в частности, отпечатков якобы человеческих ступней или обуви, а также металлические болты и гвозди в слоях пород возрастом несколько сотен миллионов лет. Например, экспедицией «Космопоиск » из Московского авиационного института (руководитель - В. А. Чернобров) на юге Калужской области был найден такой болт в булыжнике, возраст которого сторонники аномальных находок оценивают в 200 миллионов лет. Уфологи пытаются объяснить подобные артефакты прилётом инопланетян, креационисты разных религий - либо (как индуисты М. Кремо и Р. Томпсон) глубокой древностью (сотни миллионов или даже миллиарды лет) человечества, либо (как некоторые протестанты или православные) малым (несколько тысяч лет) возрастом Земли. С точки зрения общепринятых в геологии и палеонтологии представлений, такие «аномальные» находки либо вообще не являются следами присутствия человека (отпечатки якобы человеческих ног являются разломами в породе), либо представляют из себя включение артефактов (болты, гайки, молотки и т. д.) в современные конкреции.

Рассекреченные наблюдения

Они лишь недавно стали известны широкой публике. Речь идет о спонтанных по своей природе проникновениях случайных наблюдателей в прошлые эпохи, которые видели все происходящее как бы со стороны, не имея возможности вмешиваться в ход тогдашних событий. Об этом свидетельствуют ранее скрываемые сведения из правительственных архивов США и СССР, более чем за 20 лет наблюдений.

Так, например, в 1976 году военный летчик Виктор Орлов, пролетая над территорией СССР на своем МиГе, к своему удивлению и ужасу, наблюдал происходящее внизу сражение, которое никоим образом нельзя было связать с современностью. Свои впечатления он подробно отразил в отчете. Специалисты-историки пришли к выводу, что советский летчик каким-то непостижимым образом переместился в Америку XIX века, явившись невольным свидетелем одной из важных битв в тогдашней гражданской войне Севера и Юга.

Ровно через 20 лет другой советский летчик Александр Устимов, совершая полет в пределах территории Советского Союза, внезапно обнаружил, что находится над Древним Египтом, разглядев внизу одну свежепостроенную пирамиду и фундаменты других, возле которых он заметил множество работающих на строительстве полуголых людей.

В 1994 году военный летчик из США Р. Уитмен, пролетающий над Флоридой, внезапно оказался, как он считает, над территорией средневековой Европы. Он увидел огромные костры, на которых сжигали груды мертвецов. По-видимому, он также переместился не только в пространстве, но и во времени,
попав в ту эпоху, когда в Европе была эпидемия чумы…

Таких случаев насчитывается до нескольких десятков. Однако большая их часть, по крайней мере в СССР, не дошла до сведений руководства страны. Летчики резонно рассуждали, что донесение такого рода сведения высокому начальству чревато тем, что их отстранят от дальнейших полетов, усомнившись в их психической полноценности. Та информация, которая дошла до руководства, сразу стала засекреченной, поскольку генералы не знали, что с ней делать, но в то же время боялись ее обнародовать…

Датский физик Покс Хеглунд, позднее анализируя эти и подобные им случаи, отметил, что видения картин прошлого длились в пределах 20 секунд и не зависели от скорости движения самолета. Кроме того, не отмечалось ни единого случая проникновения пилотов в будущее.

Интересно, что Стрибер все же отвергает возможность контакта с инопланетянами на американской территории. Во-первых, потому, что страна крайне милитаризована, повсюду военные базы, а действия вооруженных сил не оставляют надежд на мирный исход контакта. Американские военные начали стрелять по НЛО еще в сороковых годах ХХ века. Во-вторых, политическая воля нынешних властей США такова, что контакт будет использован только во вред остальному сообществу. В Белом Доме откровенно грезят идеями мирового господства. В-третьих, американское население до зубов вооружено и потому непредсказуемо.

Спонтанные путешествия во времени

Если случаи с пилотами еще можно как-то связать с гипнозом, мистификацией или даже с временным расстройством психики, вызванным кислородным голоданием мозга на больших высотах, то другие случаи никак нельзя отнести к проявлениям обмана или помешательства.

Речь идет не о наблюдениях картин прошлого, а о мгновенном физическом перемещении людей из одной эпохи в другую, совершаемом неизвестной силой помимо их воли и желания.

Так, к примеру, во время движения поезда из Лондона в Глазго в 1912 году в одном из вагонов неожиданно возник испуганный пожилой мужчина, одетый по моде XVIII века.

Пассажиры, как могли, пытались успокоить странного попутчика. «Я - Пимп Дрейк, кучер из Четнема! Куда я попал?» - вопил человек, трясясь от страха. Кто-то побежал за кондуктором, но когда они вернулись, человека уже не было… В качестве доказательства его присутствия на сиденье осталась треуголка и кнут, которые он до этого сжимал в руках… Специалисты-этнографы, которым показали находку, с уверенностью заявили, что обе эти вещи действительно относятся к временам почти двухсотлетней давности. Позднее было установлено, что селение под названием Четнем до сих пор существует в той местности, где шел поезд, а в церковно-приходской книге этого поселка обнаружилось имя Пимпа Дрейка. Причем на полях этого документа был помещен рассказ о том, как Пимп Дрейк увидел дышащий огнём и дымом «дьявольский экипаж», внутри которого он внезапно оказался, а потом так же быстро из него исчез…

Другая странная история сохранилась в архиве полиции Нью-Йорка. Там говорится, что осенью 1952 года на Бродвее автомобиль насмерть сбил мужчину, внезапно появившегося посреди проезжей части, но странно было не это. Полицейский и врач, которые осматривали труп, были удивлены тем, что покойный одет по моде прошлого века. В карманах сюртука мертвеца они нашли паспорт, выданный сто лет назад, но выглядевший как новый, а также серебряные карманные часы и перочинный нож, датированные тем же временем. Более того, полиция установила, что улица, указанная на визитке покойного, не существует уже полвека. Продолжив поиски, детективы установили, что этот человек действительно жил в Нью-Йорке, но примерно 70 лет назад вышел на улицу и назад не вернулся. На сохранившейся у родственников его фотографии они узнали незнакомца, погибшего под колесами автомобиля. На нем был тот же самый костюм, что и в морге, а на обратной стороне фотографии дата - апрель 1884 года…

Если открытый контакт будет всеохватным и очевидным, то всем СМИ уже будет не до смеха. Придётся признать, что они были неправы на протяжении последних шестидесяти лет и попросту дезинформировали население. Не исключено, что они ещё долго будут обращаться с информацией неподобающим образом и станут мелочно выискивать подвохи. И вообще трудно сказать, как они отреагируют на столь важное событие. Может, по инерции будут отрицать всё и вся, как это нередко делается сейчас, при менее масштабных уфологических событиях.


Пришельцы из будущего

Несколько лет назад в Нью-Йорке по обвинению в мошенничестве был арестован некто Эндрю Карлсин. Он, вложив в акции меньше тысячи долларов, уже через 2 недели на бирже заработал 350 миллионов баксов. Примечательно, что совершаемые им торговые операции первоначально совсем не сулили выигрыша. Власти штата обвинили Карлсина, что он получил прибыльную для себя информацию незаконным путем, поскольку не нашли других доводов для столь поразительного результата.

Однако на допросе Карлсин неожиданно заявил, что он якобы появился из 2256 года и, обладая сведениями обо всех банковских операциях за истекшие годы, решил обогатиться. Он категорически отказался показать свою машину времени, но сделал заманчивое для властей предложение - сообщить несколько предстоящих важных событий, включающих мастонахождение Бен Ладена и изобретение лекарства от СПИДа…

Согласно непроверенным сведениям, кто-то внес за него залог в миллион долларов, чтобы он вышел из тюрьмы, после чего Карлсин исчез и, по-видимому, навсегда…

Другой путешественник во времени, якобы прибывший к нам из 2034 года, назвал себя Джон Титор. Именно этот человек и сообщил ряд удивительных событий, которые, по его мнению, произойдут в последующие годы. К примеру, он сказал, что около 2034 года будут открыты новые фундаментальные законы, позволяющие с большой скоростью перемещаться не только в пространстве, но и во времени. Он также рассказал о цели своего путешествия в наше время. С его слов, он посетил сначала 1975 год, чтобы захватить с собой один из первых персональных компьютеров фирмы IBM, наиболее важные детали к которому якобы были утрачены, но стали необходимы в его время для новых моделей. Выполнив обещанное, Титор решил заглянуть в 2000 год, чтобы встретиться со своими родителями и с самим собой в двухлетнем возрасте. Именно здесь, с трудом убедив родителей, что он является их повзрослевшим сыном, Титор воспользовался их компьютером, чтобы обратиться к миру, а потом вернуться в свое время. В частности он, не называя дат, предсказал несколько событий: полет китайского космонавта, коровье бешенство, войну в Ираке и т. д… К 2036 году, по мнению Титора, интернет окончательно заменит собой телевидение и телефон, а полеты в космос станут обыденным делом…

2. Население, которое не желает и (или) не способно реагировать агрессивно.

Виртуальные путешествия во времени

К ним относятся различного рода предсказания, пророчества и гадания. Несмотря на то что огромная часть такого рода информации исходит от людей, только считающих себя ясновидцами, но не являющихся таковыми, а также тот факт, что и у пророков бывают проколы, к этой возможности надо отнестись с полной серьезностью.

Физически невыводимые предсказания вполне возможны. При этом человек, совершающий такой прогноз, обладает особого рода способностями, позволяющими ему на время проникнуть за пределы нашего мира, в мир сверхпричин, получая оттуда беспрецедентную информацию о будущем. При этом зачастую не имеет значения, с помощью какой конкретной методики предсказатель получает эти сведения, т. е. гадает ли он на картах, на бобах или на кофейной гуще, обращается ли он к астрологу или к хироманту. Важно сказать, что такого рода овладение будущими сведениями, как правило, имеет не конкретный, а, скорее, рекомендательный или предупредительный характер, давая возможность человеку, получающему эту новость, самому сделать выбор, как себя вести.

Индия была бы включена в этот перечень, если бы не сложные религиозные проблемы, которые непременно там возникнут.

Путешественники во времени изрядно наследили в своем прошлом

Если все предыдущие описанные случаи еще как-то можно заподозрить в недостоверности, преувеличении или заблуждении, то вот упомянутые ниже факты никак нельзя отнести к таковым. Речь идет о так называемых хрональных артефактах - вещах, предметах, явно изготовленных человеком, найденных при археологических раскопках и в геологических слоях, относящихся к такому времени, где ни человека, ни самих вещей быть не должно.

Так, к примеру, китайские археологи были сбиты с толку, когда обнаружили современные швейцарские часы в 400?летнем китайском захоронении, которое вплоть до наших времен никто не вскрывал. У этих женских часиков с металлическим браслетом действительно был такой вид, что они находились под землей почти половину тысячелетия. Стрелки часов навечно замерли, а внутри браслета выгравировано название швейцарской фирмы Swiss. Часы этой марки и сейчас популярны во всех странах мира…

В 80-х годах XIX века во время бурения скважины в одном из штатов США обнаружили металлический предмет, явно искусственного происхождения. Возраст находки составлял около 400 тысяч лет. Это была монета из неизвестного сплава и с иероглифами на обеих сторонах, которые не удалось расшифровать. Известно, что человек современного типа появился на нашей планете около ста тысяч лет назад, а на американском континенте и того позже.

Приблизительно в то же время в штате Айдахо на большой глубине была найдена изящная скульптура женщины из керамики. Ее возраст насчитывал около двух миллионов лет.

В сороковые годы XIX века в Великобритании рабочими каменоломен была найдена золотая нить, буквально вмурованная в камень. Она насчитывала более 300 тысяч лет. В те же годы в США в куске угля была найдена крепко спаянная с породой золотая цепочка. Возраст этого украшения, которым могли воспользоваться разве что динозавры, несколько миллионов лет.

В том же XIX веке в Великобритании во время работ по добыче природного камня была найдена металлическая ваза с прихотливым чеканным узором на ее поверхности в виде гирлянды цветов. Возраст вазы 600 миллионов лет.

В 1961 году в Калифорнии нашли предмет, похожий на свечу зажигания. Археологи определили, что странный предмет и окружающие окаменелости имеют возраст около 500 тысяч лет.

В 1968 году в штате Юта (США) Вильям Майстер нашел окаменевшие отпечатки протекторов ботинок, причем левый ботинок наступил на трилобита, останки которого окаменели вместе с отпечатком. Возраст находки 400-500 миллионов лет.

Словом, незадачливые путешественники во времени наследили основательно в различных эпохах.

По мнению ряда ведущих российских уфологов, в космосе есть немало цивилизаций, которые довольно равнодушно относятся к событиям на Земле. Они не испытывают никаких чувств и интереса к Земле, считая наш район захолустьем Вселенной. Среди них есть немало сообществ, которые пессимистически оценивают шансы на развитие человечества, видя людей неисправимыми и не поддающимися обучению. Они уверены, что в течение тысячелетий человечество не только не продвинулось в лучшую сторону, но и наоборот - деградирует. И в духовном, и в умственном отношении.

Несколько слов о возможности таких путешествий

Примерно о том же пишет Рей Брэдбери в своем фантастическом рассказе «И грянул гром», где рассказывается, как один путешественник во времени, проникнувший с помощью особых технологий в эпоху динозавров, случайно раздавил ногой бабочку. В результате вся человеческая история и даже биологический вид гомо сапиенса значительно изменились. Но, с другой стороны, если бы это было на самом деле так, то все путешествия во времени нужно было бы запретить или поставить под жесткий контроль. В действительности же обнаруженные артефакты говорят об обратном. Можно только представить, сколько еще таких, пока ненайденных, находок таится в глубинах нашей планеты! Также можно сказать, что путешествия во времени, разумеется, будут контролироваться, когда они станут открытыми. В противном случае какой-нибудь авантюрист смог бы действительно изменить историю, обеспечив пушками и пулеметами армию Чингисхана, а Гитлера - современными ракетами с ядерной начинкой…

Иновремяне, как называет таких туристов известный исследователь В. А. Чернобров, разумеется, будут терять пуговицы, авторучки, записные книжки, расчески, гвозди и прочие мелочи, которые потом будут находить и уже находят их удивленные предки в слоях породы, относящихся к различным историческим и геологическим эпохам.

Нам же остаётся только надеяться, что наши потомки не пойдут на более рискованные опыты со временем…

Что такое пространственно-временной континуум?

Что мы знаем про это? Давайте не будет тут сильно умничать и писать забубенные тексты языком, который большинство не захочет понимать, а попробуем по простому вместе с вами разобраться.

Пространственно-временной континуум - это математическая модель, абстракция, с помощью которой люди пытаются описать реальность.

Слово "континуум" указывает на то, что реальность в этой модели обладает свойством непрерывности. Пространство и время - еще два свойства реальности.

В конкретной модели пространственно-временного континуума все эти свойства объединены особым образом.
Существуют разные модели пространства-времени, среди которых условно называемые "пространство-время Аристотеля", "пространство-время Галилея", "пространство-время Ньютона", "пространство-время Минковского", "пространство-время Эйнштейна" и, вероятно, другие. Сейчас общепринятой моделью является пространство-время Эйнштейна.


Континнуум это одно из выражений бесконечности. Причем, непрерывной бесконечности. Самым простым примером является множество действительных чисел. Ну... еще проще: между любыми двумя точками всегда есть как минимум еще одна точка:)))

Континуум пространства и времени - это не только то, что между пространством и временем нет разрывов...
А еще и то, что пространство и время есть везде и всегда. Нет места, где бы вдруг пространство разорвалось, а потом где-то снова начиналось:) Нет точки, где время отсутствует...

Вот еще есть такая аналогия:

Слияние трех измерений пространства и одного измерения времени в единый четырехмерный.... ну скажем объект.
Представь себе линию. Это время. По линии мы можем двигаться только вперед-назад. Теперь возьмем КАЖДУЮ точку линии (а она[линия] бесконечна) и представим, что в точке скрыта еще одна бесконечная прямая.
Затем в каждой точке новой прямой представим еще одну "свернутую" бесконечную прямую. А потом еще, и еще, и еще...
Всего должно получиться 11 бесконечных линий.

1 - Время; 2-4 - Пространство; 5 - Гравитация; 6 - Эл.-магнетизм.....

А теперь немного сложнее.

Современная теория пространства-времени имеет 4 измерения, 3 из которых пространственные и одно временное . При этом три координаты пространства и одна времени равноправны, и только от наблюдателя зависит, какая из них будет принята за систему отсчета. То есть, они взаимозаменяемы. Пространство-время имеет динамическую природу, а инструмент, с помощью которого измерения взаимодействуют с физическими телами и объектами – это гравитация.

Согласно положениям современной физики, пространственно-временной континуум – это непрерывное многообразие, оно не плоское, но может изменять кривизну динамически, в зависимости от условий.

Для многих шокирующим фактом является то, что время ставится в этой теории наравне с остальными координатами. Причина этого в том, что теория относительности основывается на том, что время зависит от скорости наблюдателя, который находится в точке отсчета. Время вовсе не является независимым от измерений пространства, оно неотделимо от них.

Наиболее привычной системой является четырехмерное пространство-время, оно оказывается достаточным для решения многих задач. Но в теориях описания Вселенной измерений гораздо больше. Например, бозонный вариант теории суперструн (наиболее старый из ее вариантов) требовал наличия 27 измерений. Сегодня эта теория усовершенствована, количество измерений сведено к 10. Ученые надеются, что удастся компактифицировать теорию до наблюдаемых 4 измерений. Возможно, что остальные дополнительные измерения просто свернуты и имеют Планковские размеры. Но в этом случае они все же должны как-то проявляться. Этот вопрос активно изучается физиками в настоящее время.

Все это забавно и ужасно интересно, но мне кажется, пока этому не будет дано хоть какое нибудь практическое и осязательное применение - все это будет как сказки на ночь. А что вы думаете о таких серьезных изысканиях? Не похоже ли это на борьбу с глобальным потеплением которого оказывается не существует?



Включайся в дискуссию
Читайте также
Обязательный аудит: критерии проведения Обязательный аудит критерии малое предприятие
Составление смет на проектные и изыскательские работы
Транспортный налог в московской области Ставка по транспортному налогу в году