Подпишись и читай
самые интересные
статьи первым!

Расчет последствий взрыва внутри технологического оборудования. Расчет зоны поражения Расчет зон поражения избыточным давлением взрыва

РАСЧЕТ ПОСЛЕДСТВИЙ ВЗРЫВА

ВНУТРИ ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ

Развитие химической промышленности сопровождается увеличением масштабов производства, мощности установок и аппаратов и усложнением технологических процессов и режимов управления производством. Вследствие усложнения и увеличения производства, происходящие аварии имеют все более тяжкие последствия. Особую опасность представляют химические, взрывоопасные производства, атомные электростанции , склады взрывчатых и легковоспламеняющихся веществ, боеприпасов , а также сосуды и резервуары, предназначенные для хранения и транспортировки нефтепродуктов и сжиженных газов.

В настоящее время в мире все больше внимания уделяется вопросам обеспечения на высоком уровне защиты окружающей среды, безопасности жизнедеятельности и охране труда . Одним из возможных путей снижения риска возникновения чрезвычайных ситуаций на промышленных объектах является анализ произошедших аварий. На их основе разрабатываются мероприятия по предупреждению возникновения аварий и предотвращению опасных последствий.

Одним из видов аварий на промышленных объектах являются взрывы технологического оборудования. Взрыв оборудования несет потенциальную опасность поражения людей и обладает разрушительной способностью.

Взрыв (взрывчатое превращение) – это процесс быстрого физического или химического преобразования вещества, сопровождающийся переходом потенциальной энергии этого вещества в механическую энергию движения или разрушения . В зависимости от ви­да энергоносителя и условий энерговыделения при взрыве различают химические и физиче­ские источники энергии.


Физический взрыв может быть вы­зван внезапным разрушением сосуда со сжатым газом или с перегретой жид­костью, смешиванием перегретых твердых веществ (расплава) с холодными жидкостями и т. д.

Источником химического взрыва являются быстропротекающие самоускоряющиеся экзотермические реакции взаимодействия горючих веществ с окислителями или термического раз­ложения нестабильных соединений.

Физические взрывы в оборудовании

Физические взрывы, как правило, связывают с взрывами сосудов от давления газов или паров .

В химической технологии часто приходится преднамеренно сжимать как инертные, так и горючие газы, затрачивая при этом электрическую, тепловую или другие виды энергии. При этом сжатый газ (пар) находится в герметичных аппаратах различных геометрических форм и объемов. Однако в ряде случаев сжатие газов (паров) в технологических системах происходит случайно вследствие превышения регламентированной скорости нагрева жидкости внешним теплоносителем .

При взрывах сосудов под давлением могут возникать сильные ударные волны, образуется большое число осколков, что приводит к серьезным разрушениям и травмам. При этом общая энергия взрыва переходит в основном в энергию ударной волны и кинетическую энергию осколков.

Многие жидкости хранятся или используются в условиях, когда давление их паров значительно превышает атмосферное. Энергия перегрева жидкости может быть источником чисто физических взрывов, например, при интенсивном перемешивании жидкостей с различными температурами, при контакте жидкости с расплавами металла и нагретыми твердыми телами. При этом не происходит химических превращений, а энергия перегрева расходуется на парообразование, которое может протекать с такой скоростью, что возникает ударная волна. Масса образующихся паров и скорость парообразования при этом определяются по материальным и тепловым балансам двух возможных моделей аварийных ситуаций: 1) тепловыделение с парообразованием происходит при постоянном объеме; 2) за тепловыделением при сохранении объема следует расширение с сохранением теплового равновесия.

При смешивании двух жидкостей с существенно разными температурами возможны явления физической детонации с образованием облака жидких капель одного из компонентов.

На промышленных предприятиях нейтральные (негорючие) сжатые газы - азот , диоксид углерода, фреоны, воздух - в больших объемах находятся главным образом в сферических газгольдерах высокого давления.

9 июля 1988 г произошел взрыв шарового газгольдера сжатого воздуха объемом 600 м3 (радиус сферы 5,25 м), изготовленного из стали толщиной стенки 16 мм и рассчитанного для работы под давлением 0,8 МПа. Взрыву газгольдера (происшедшему при давлении 2,3 МПа) предшествовало медленное повышение давления до предела текучести стали, из которой он был изготовлен.

Шаровой газгольдер входил в состав технологического агрегата производства карбамида, введенного в эксплуатацию в апреле 1988 г. Воздух в газгольдер поступал из общей заводской технологической линии через обратный клапан и арматуру. Газгольдер не был оборудован средствами сброса давления, так как максимально возможное давление воздуха (0,8 МПа) в нем обеспечивалось его стабилизацией в технологической системе и характеристиками воздушных компрессоров типа ВП-50-8. Контроль давления осуществлялся показывающим по месту и регистрирующим манометрами на пульте управления.

Из газгольдера воздух поступал по системе трубопроводов на технологические нужды, в том числе в отделение очистки СО2 от горючих примесей. В это отделение воздух из газгольдера отводился по трубопроводу диаметром 150 мм в нагнетательную линию турбокомпрессора СО2 типа «Бабета», работающую под давлением 2,3 МПа и являющуюся одновременно приемной линией дожимного до 10,0 МПа поршневого компрессора (4ДВК-210-10); подводимый воздух предназначался для продувки системы компремирования и через нее технологической линии от СО2 перед ремонтом.


По окончании ремонта технологической установки был включен турбокомпрессор СО2 и через 10 мин при движении давления в линии нагнетания 2,3 МПа был включен поршневой компрессор с регулировкой на режимное давление 10,0 МПа. После пуска центробежного компрессора СО2 давление в воздушном газгольдере стало возрастать; при этом манометр со шкалой 0,8 МПа на пульте управления «зашкалило». Диоксид через неплотно закрытый вентиль из нагнетательного трубопровода, работающего центробежного компрессора по воздушной линии поступал в воздушный газгольдер. Давление газа в газгольдере возрастало в течение 4 ч, что привело к разрушению газгольдера от превышения давления.

Поступление СО2 в воздушный газгольдер подтверждается снижением температуры воздуха до 0°С за счет дросселирования СО2 с давлением нагнетания центробежного компрессора до давления в газгольдере.

В областях низких давлений ударной волны разрушено до 100% остекления в шести производственных зданиях, находящихся на расстоянии м от места установки взорвавшегося газгольдера; незначительные повреждений остекления (до 10%) отмечались в домах жилых кварталов, расположенных в 2500 м от места взрыва.

Большую опасность представляли разлетающиеся осколки оболочки газгольдера.

Химические взрывы в оборудовании

Экзотермические химические реакции проводят в технологических системах (реакторах), сбалансированных по тепловому режиму. Выделяемое при реакции тепло отводится внешним хладагентом через стенки теплообменных элементов с нагретыми продуктами реакции или с избыточным сырьем за счет его испарения и т. д. Устойчивое протекание реакционного процесса обеспечивается равенством скоростей тепловыделения и теплоотвода. Скорость реакции и соответственно притока тепла возрастает по степенному закону с ростом концентрации реагентов и быстро увеличивается при повышении температуры.

При выходе химической реакции из-под контроля возможны следующие механизмы взрывов .

1. Если реакционная масса представляет собой конденсированные ВВ, при достижении критической температуры возможна детонация продукта; при этом взрыв будет происходить по механизму взрыва точечного заряда ВВ в оболочке. Энергия взрыва будет определяться тротиловым эквивалентам всей массы ВВ в системе.

2. В условиях газофазных процессов возможно термическое разложение газов или взрывное горение газовой смеси; их следует рассматривать как взрывы газов в замкнутых объемах с учетом реальных энергетических потенциалов и тротиловых эквивалентов.

3. В жидкофазных процессах возможен вариант аварийного взрывного энерговыделения: перегрев жидкости и повышение давления пара над ней до критического значения.

Общая энергия взрыва облака будет равна сумме эквивалентов теплот сгорания паров, имеющихся в системе и дополнительно образующихся при испарении жидкости.

Причинами выхода из-под контроля экзотермической химической реакции часто являются снижение теплопритока в жидкофазных периодических процессах с большими массам и реагирующих веществ и ограниченные возможности теплоотвода обычными методами. К таким процессам относится, в частности, полимеризация в массе мономера, при которой скорость реакции регулируется обычными методами, а также дозировкой инициирующих веществ. На случай выхода процесса из-под контроля дополнительно предусматривают ввод в реакционную массу веществ, снижающих скорость или подавляющих экзотермическую реакцию.

Некоторые вещества могут полимеризоваться более или менее самопроизвольно, и обычные реакции полимеризации будут экзотермическими. Если мономер - летучий, как это часто бывает, достигается стадия, при которой может произойти опасное повышение давления. Иногда полимеризация может протекать только при повышенных температурах, но для некоторых веществ, таких, как этиленоксид, полимеризация может начаться при комнатной температуре, особенно когда исходные соединения загрязняются веществами, ускоряющими полимеризацию.

Подобные аварии происходили при полимеризации винилхлорида и других мономеров, в хранилищах хлоропрена и в железнодорожных цистернах с жидким хлором, углеводородами и другими активными соединениями, когда в них ошибочно закачивали вещества, взаимодействующие с содержащимися в них продуктами . При значительном превышении тепловыделения по сравнению с теплоотводом при таких авариях происходит полное раскрытие технологической системы, при котором резко уменьшается давление, снижается скорость химической реакции или она совсем прекращается. В этом случае общий энергетический потенциал составляет сумму эквивалентов энергий сгорания паров (газов), находящихся над жидкостью и образующихся в результате испарения под действием тепла перегрева жидкости до температуры, соответствующей критическим условиям разрушения системы.

Так же самый простой случай взрыва - это процесс разложения, который дает газообразные продукты . Один из примеров - пероксид водорода , который разлагается со значительной теплотой реакции, давая водяной пар и кислород:

2Н2О2 ->2Н2О + О2 - 23,44 ккал/моль

Как бытовой продукт пероксид водорода продается в виде 3%-ного водного раствора и представляет незначительную опасность. Иначе дело обстоит с пероксидом водорода «высокой пробы», концентрация которого составляет 90% или более. Разложение такой Н2О2 ускоряется рядом веществ, что используется в качестве реактивного топлива или в газовой турбине для накачки топлива к главным двигателям.

Одним из примеров может служить окислительно-восстановительные реакции и конденсации :

1). Окислительно-восстановительные реакции, в которых воздух или кислород реагирует с восстановителем, весьма обычны и составляют основу всех реакций горения. В тех случаях, когда восстановитель является недиспергированным твердым веществом или жидкостью, реакции горения протекают недостаточно быстро, чтобы стать взрывными. Если твердое вещество мелко раздроблено или жидкость находится в виде капелек, то возможен быстрый рост давления. Это может привести в условиях замкнутого объема к росту избыточного давления вплоть до 0,8 МПа.

2). Реакции конденсации весьма распространены. Они особенно широко применяются в производстве красок, лаков и смол, где служат основой процессов в реакторах непрерывного действия со змеевиками для нагрева или охлаждения. Зарегистрировано много примеров неконтролируемых реакций, обусловленных тем, что скорость переноса тепла в таких сосудах является линейной функцией разности температур между реакционной массой и охладителем, тогда как скорость реакции - это экспоненциальная функция температуры реагента. Однако благодаря тому, что скорость выделения тепла, будучи функцией концентрации реагентов, во время протекания реакции уменьшается, нежелательный эффект до некоторой степени компенсируется.

Таким образом, энергия взрыва, вызванного выходом из-под контроля экзотермической химической реакции, зависит от характера технологического процесса и его энергетического потенциала. Такие процессы, как правило, оснащаются соответствующими средствами управлений и противоаварийной защиты, что снижает возможность развития аварии. Однако химические реакции часто являются источником неуправляемого высвобождения энергии в аппаратуре, в которой не предусмотрен организованный теплоотвод. В этих условиях начавшиеся самоускоряющиеся химические реакции неизбежно приводят к разрушению технологических систем.

Статистика аварий

В таблице 1 представлены данные об авариях, связанных с взрывами внутри технологического оборудования.

Таблица 1 - Перечень произошедших аварий

Дата и

место

аварии

Вид аварии

Описание аварии и

основные причины

Масштабы развития аварии, максимальные зоны действия поражающих факторов

Число пострадавших

Источник информации

г. Ионава

Взрыв резервуара-хранилища

В результате полимеризации винилацетата выделилось тепло, достаточного для создания разрушительного давления.

Разрушение резервуара.

Разрушение аппарата окисления

При выходе из-под контроля экзотермической реакции окисления изопропилбензола воздухом произошло разрушение аппарата от резкого подъема давления.

Разрушение аппарата.

склад Сумгаитского ПО

Взрыв сферического резервуара

Вследствие начавшегося процесса полимеризации бутадиена произошло разрушение резервуара.

Врыв резервуара повлек за собой взрыв цистерны. Осколками повреждены соседние резервуары и здание.

Продолжение таблицы 1

Взрыв газгольдера

Взрыву газгольдера предшествовало медленное повышение давления до предела текучести стали.

На расстоянии м от газгольдера 100% разрушено остекление,

2500 м – 10%.

02.1990 Новокуйбышевское НПЗ

Взрыв сосуда

Сосуд разрушился в результате превышения давления паров пропан-бутановой фракции в сепараторе.

Разрушение емкости по сплошному металлу обечайки.

Взрыв реактора

В результате экзотермической химической реакции разложения нитромассы и превышения давления произошел взрыв реактора.

Разрушено здание, в котором находился реактор.

07.1978 Сан-Карлос

Разрыв оболочки автоцистерны

Осколки разлетелись на расстояние 250 м, 300 м, 50 м. Тягач оказался на расстоянии 100м.

07.1943 Людвигсгафене,

Взрыв цистерны

Из-за превышения гидравлического давления

Разрушение оболочки.

Продолжение таблицы 1

Германия

разрушилась цистерна, содержащая бутан-бутиленовой смеси.

07.1948 Людвигсгафене, Германия

Взрыв цистерны диметилового эфира

Из-за превышения гидравлического давления разрушилась цистерна.

Разрушение оболочки.

10.02.1973 Нью-Йорк, США

Взрыв в резервуаре

При ремонте резервуара взорвались пары природного газа от искры.

Разрушение резервуара.

40 человек погибло, 2 пострадали.

24.10.1973 Шеффилд, Англия

Взрыв подземного резервуара

Взрыв остатков вещества от оборудования для резки материалов пламенем.

Радиус разрушений составил около полукилометра.

3 человека погибло, 29 получили ранения

19.12.1982 г. Каракас, Венесуэла

Взрыв резервуара

На складе нефтехранилища взорвался резервуар с 40 тыс. т топлива

Горящая нефть хлынула в город и в море. Загорелся танкер в бухте и взорвался еще один резервуар на берегу.

140 человек погибло, пострадало более 500.

20.06.2001 Каталония, Испания

Взрыв резервуара

Взрыв резервуара с техническим спиртом произошел на химическом предприятии.

2 человека погибло

Методика расчета

При взрывах оборудования основным поражающим фактором является ударная воздушная волна .

При оценке параметров аварийного взрыва емкости с инертным газом (смесью газов) допускается, что оболочка имеет сферическую форму. Тогда напряжение в стенке сферической оболочки определяется по формуле:

σ = ΔP · r/(2d), (1)

где σ – напряжение в стенке сферической оболочки, Па;

ΔP – перепад давлений, Па;

r – радиус стенки оболочки, м;

d – толщина стенки оболочки, м.

Преобразование формулы (1) позволяет рассчитать разрушающее давление (условие разрушения - σ ≥ σв):

ΔP = 2d · σв/ r, (2)

где σв – временное сопротивление разрушению материала, Па.

Давление парогазовой смеси в емкости:

Р = ΔP + Р0, (3)

где Р0 – атмосферное давление, 0,1·106 Па.

Уравнение изэнтропы:

Р/Р0 = (ρ/ρ0)γ, (4)

где γ – показатель адиабаты газа;

ρ0 – плотность газа при атмосферном давлении, кг/м3,

ρ – плотность газа при давлении в емкости, кг/м3.

Плотность газа при давлении в емкости определяется после преобразования уравнения изэнтропы (4):

ρ = ρ0 · (Р/Р0)1/γ, (5)

Полная масса газа:

С = ρ · V, (6)

где V – объем парогазовой смеси, м3.

При взрыве емкости под внутренним давлением Р инертного газа (смеси газов) удельная энергия Q газа:

Q= ΔP/[ρ · (γ - 1)] (7)

В случае сжатого взрывоопасного газа:

Q = Qв + ΔP/[ ρ· (γ - 1)], (8)

где Qв – удельная энергия взрыва газовой смеси, Дж/кг.

Тротиловый эквивалент взрыва емкости с газом составит:

qтнт = Q · С/ Qтнт, (9)

где Qтнт – удельная энергия взрыва тротила, равная 4,24·106 Дж/кг.

Эквивалент по ударной волне оценивается с коэффициентом 0,6:

qу. в. = 0,6 · qтнт (10)

q = 2 · qу. в. (11)

Избыточное давление на фронте ударной волны (ΔРфр, МПа) на расстоянии R определяется по формуле для сферической УВВ в свободном пространстве :

где , R – расстояние от эпицентра взрыва до реципиента, м.

В таблице 2 представлены значения предельно допустимого избыточного давления ударной волны при сгорании газо-, паро - или пылевоздушных смесей в помещении или открытом пространстве , для которых подбираются расстояния для определения зон поражения.

Таблица 2 – Предельно допустимые избыточные давления при сгорании газо-, паро - или пылевоздушных смесей в помещении или открытом пространстве

Степень поражения

Избыточное давление, кПа

Полное разрушение зданий

(смертельное поражение человека)

50 %-ное разрушение зданий

Средние повреждения зданий

Умеренные повреждения зданий (повреждения внутренних перегородок, рам, дверей и т. п.)

Нижний порог повреждения человека волной

давления

Малые повреждения (разбита часть остекления)

Импульс волны давления, кПа·с:

Формулы (12,13) справедливы при условии ≥0,25.

Условная вероятность поражения избыточным давлением, развиваемым при взрыве парогазовоздушных смесей, человека, находящегося на определенном расстоянии от эпицентра аварии, определяется с помощью «пробит–функции» Pr, которая рассчитывается по формуле :

Pr = 5 – 0,26·ln(V) , (14)

где

Связь функции Рr с вероятностью Р той или иной степени поражения находится по таблице 3 .

Таблица 3 – Связь вероятности поражения с функцией «пробит»

Основной целью расчетов по данной методике является определение радиусов зон различной степени поражения УВВ зданий, сооружений и человека и определение вероятности поражения людей, находящихся на определенном расстоянии от эпицентра взрыва.

Примеры расчетов

Физические взрывы

Пример №1

Взрыв шарового газгольдера сжатого воздуха объемом V = 600 м3 произошел вследствие превышения регламентированного давления. Аппарат рассчитан для работы под давлением Р = 0,8 МПа. Взрыв произошел при давлении Р = 2,3 МПа. Плотность газа при нормальном давлении ρ = 1,22 кг/м3, показатель адиабаты γ = 1,4. Оценить последствия взрыва сжатого воздуха в шаровом газгольдере (определить радиусы зон различной степени поражения УВВ зданий, сооружений и человека) и определить вероятность поражения человека на расстоянии R = 50 м.

Решение :

Определяется перепад давлений, преобразовав формулу (3):

ΔР = 2,3 - 0,1 = 2,2 МПа

Рассчитывается плотность газа по уравнению (5):

ρ = 1,22 · (2,3/0,1)1/1,4 = 11,46 кг/м3

Полная масса газа:

С = 11,46 · 600 = 6873 кг

Q = 2,2 / = 0,48 МДж/кг

qтнт = 0,48 · 6873 / 4,24 = 778 кг

Эквивалент по ударной волне:

qу. в. = 0,6 · 778 = 467 кг

Применительно к наземному взрыву принимается значение:

q = 2 · 467 = 934 кг

Результаты расчета приведены ниже (таблица 4).

Таблица 4 – Радиусы зон воздействия УВВ

ΔРфр, кПа

Для определения вероятности поражения человека на заданном расстоянии по формулам (12,13) рассчитываются избыточное давление во фронте волны и удельный импульс для расстояния 50 м:

50/(9341/3) = 5,12

ΔРфр = 0,084/5,12 + 0,27/5,122 + 0,7/5,123 = 31,9 кПа.

I = 0,4 · 9342/3/50 = 0,76 кПа·с

Условная вероятность поражения избыточным давлением человека, находящегося на 50 м от эпицентра аварии, определяется с помощью пробит – функции Pr, которая рассчитывается по формуле (14):

V = (17500/(31,9·103))8,4 + (290/(0,79·103))9,3 = 0,0065

Pr = 5 - 0,26 · ln(0,0065) = 6,31

С помощью таблицы 3 определяется вероятность. Человек, находящийся на расстоянии 50 м, может получить травмы различной степени тяжести с вероятностью 91%.

Пример №2

Взрыв шарового газгольдера диоксида углерода объемом V = 500 м3 (радиус сферы 4,95 м) произошел вследствие превышения регламентированного давления. Аппарат изготовлен из стали 09Г2С толщиной стенки 16 мм и рассчитан для работы под давлением Р = 0,8 МПа. Временное сопротивление разрушения материала σв = 470 МПа. Плотность газа при нормальном давлении ρ = 1,98 кг/м3, показатель адиабаты γ = 1,3. Оценить последствия взрыва сжатого диоксида углерода в шаровом газгольдере (определить радиусы зон различной степени поражения УВВ зданий, сооружений и человека) и определить вероятность поражения человека на расстоянии R = 120 м.

Решение:

Разрушающее давление определяется по формуле (2):

ΔP = 2 · 0,016 · 470/4,95 = 3 МПа

Определяется давление парогазовой смеси в емкости по формуле (3):

Р = 3 + 0,1 = 3,1 МПа

Рассчитывается плотность газа по уравнению (5) при давлении Р:

ρ = 1,98 · (3,1/0,1)1/1,3 = 28,05кг/м3

Полная масса газа:

С = 28,05 · 550 = 14026 кг

По формуле (7) рассчитывается удельная энергия газа:

Q = 3 / = 0,36 МДж/кг

Тротиловый эквивалент взрыва газа составит:

qтнт = 0,36 · 14026 / 4,24 = 1194 кг

Эквивалент по ударной волне:

qу. в. = 0,6 · 1194 = 717 кг

Применительно к наземному взрыву принимается значение:

q = 2 · 717 = 1433 кг

Методом подбора величины расстояния от эпицентра взрыва по формулам (12,13) определяются радиусы зон различной степени поражения УВВ зданий, сооружений и человека, указанные в таблице 2.

Результаты расчета приведены ниже (таблица 5).

Таблица 5 – Радиусы зон воздействия УВВ

ΔРфр, кПа

Для определения вероятности поражения человека на заданном расстоянии по формулам (12,13) рассчитываются избыточное давление во фронте волны и удельный импульс для расстояния 120 м:

120/(14333) = 10,64

ΔРфр = 0,084/10,64 + 0,27/10,642 + 0,7/10,643 = 10,9 кПа.

I = 0,4 · 14332/3/120 = 0,42 кПа·с

Условная вероятность поражения избыточным давлением человека, находящегося на 120 м от эпицентра аварии, определяется с помощью пробит – функции Pr, которая рассчитывается по формуле (14):

V = (17500/(10,9*103))8,4 + (290/(0,42*103))9,3 = 0,029

Pr = 5 - 0,26 * ln(0,029) = 5,92

С помощью таблицы 3 определяется вероятность. Человек, находящийся на расстоянии 120 м, может получить травмы различной степени тяжести с вероятностью 82%.

Химические взрывы

Пример №1

Из хранилища объемом V = 1000 м3 был слит толуол для проведения ремонта. В начале сварки произошел взрыв паров толуола. Плотность паров по воздуху при нормальном давлении ρ = 3,2, показатель адиабаты γ = 1,4, ВКПВ - 7,8 % об., теплота взрыва газа 41 МДж/кг. Оценить последствия взрыва (определить радиусы зон различной степени поражения УВВ зданий, сооружений и человека) и определить вероятность поражения человека на расстоянии R = 100 м.

Решение :

В хранилище атмосферное давление Р = 0,1 МПа.

Плотность паров:

ρ = 3,2 · 1,29 = 4,13 кг/м3

Объем пара находится через ВКПВ (считается, что весь объем заполнен смесью с концентрацией паров толуола, соответствующей ВКПВ):

V = 1000 · 7,8/100 = 78 м3

Полная масса газа:

С = 4,13 · 78 = 322 кг

По формуле (8) рассчитывается удельная энергия газа:

Q = 41 + 1/ = 41,06 МДж/кг

Тротиловый эквивалент взрыва составит:

qтнт = 41,06 · 322 / 4,24 = 3118 кг

Эквивалент по ударной волне:

qу. в. = 0,6 · 3118 = 1871 кг

Применительно к наземному взрыву принимается значение:

q = 2 · 1871 = 3742 кг

Методом подбора величины расстояния от эпицентра взрыва по формулам (12,13) определяются радиусы зон различной степени поражения УВВ зданий, сооружений и человека, указанные в таблице 2.

Результаты подсчета давлений и импульсов приведены ниже (таблица 6).

Таблица 6 – Радиусы зон воздействия УВВ

ΔРфр, кПа

Для определения вероятности поражения человека на заданном расстоянии по формулам (12,13) рассчитываются избыточное давление во фронте волны и удельный импульс для расстояния 100 м:

100/(37421/3) = 6,44

ΔРфр = 0,084/6,44 + 0,27/6,442 + 0,7/6,443 = 22,2 кПа.

I = 0,4 · 37422/3/100 = 0,96 кПа·с

Условная вероятность поражения избыточным давлением человека, находящегося на 100 м от эпицентра аварии, определяется с помощью пробит – функции Pr, которая рассчитывается по формуле (14):

V = (17500/(22,2·103))8,4 + (290/(0,96·103))9,3 = 0,14

Pr = 5 - 0,26 · ln(0,14) = 5,51

С помощью таблицы 3 определяется вероятность. Человек, находящийся на расстоянии 100 м, может получить травмы различной степени тяжести с вероятностью 69%.

Пример №2

Взрыв железнодорожной цистерны объемом V = 60 м3, заполненной на 80 % толуолом, произошел в результате удара молнии. Плотность газа при нормальном давлении ρ = 4,13 кг/м3, показатель адиабаты γ = 1,4, ВКПВ – 7,8 % об., теплота взрыва газа 41 МДж/кг. Давление в цистерне Р = 0,1 МПа. Оценить последствия взрыва (определить радиусы зон различной степени поражения УВВ зданий, сооружений и человека) и определить вероятность поражения человека на расстоянии R = 30 м.

Решение :

Объем газа определяется через коэффициент заполнения и ВКПВ (считается, что весь объем заполнен смесью с концентрацией паров толуола, соответствующей ВКПВ):

V = 60 · 0,2 · 0,078 = 0,936 м3

Полная масса газа:

С = 4,13 · 0,936 = 3,9 кг

По формуле (7) рассчитывается удельная энергия газа:

Q = 41 + 0,9/ = 41,1 МДж/кг

Тротиловый эквивалент взрыва составит:

qтнт = 41,1 · 3,9 / 4,24 = 37,4 кг

Эквивалент по ударной волне:

qу. в. = 0,6 · 37,4 = 22,4 кг

Применительно к наземному взрыву принимается значение:

q = 2· 22,4 = 44,8 кг

Методом подбора величины расстояния от эпицентра взрыва по формулам (12,13) определяются радиусы зон различной степени поражения УВВ зданий, сооружений и человека, указанные в таблице 2.

Результаты подсчета давлений и импульсов приведены ниже (таблица 7).

Таблица 7 – Радиусы зон воздействия УВВ

ΔРфр, кПа

Для определения вероятности поражения человека на расстоянии R по формулам (12,13) рассчитываются избыточное давление во фронте волны и удельный импульс для расстояния 30 м:

30/(44,81/3) = 8,4

ΔРфр = 0,084/8,4 + 0,27/8,42 + 0,7/8,43 = 14,9 кПа.

I = 0,4 · 44,82/3/30 = 0,17 кПа·с

Условная вероятность поражения избыточным давлением человека, находящегося на 70 м от эпицентра аварии, определяется с помощью пробит – функции Pr, которая рассчитывается по формуле (14):

V = (17500/(14,9·103))8,4 + (290/(0,17·103))9,3 = 161

Pr = 5 - 0,26·ln(161) = 3,7

С помощью таблицы 3 определяется вероятность. Человек, находящийся на расстоянии 30 м, может получить травмы различной степени тяжести с вероятностью 10%.

Список использованной литературы

1. Челышев теории взрыва и горения. Учебное пособие – М.: Министерство обороны СССР, 1981. – 212 с.

2. Взрывные явления. Оценка и последствия: В 2-х книгах. Книга 1. Пер. с англ./ – М.: Мир, 1986. – 319 с.

3. Бесчастнов взрывы. Оценка и предупреждение – М.: Химия, 1991. – 432 с.

5. http://www. Пресс-Центр. ru

6. Аварии и катастрофы. Предупреждение и ликвидация последствий. Учебное пособие. Книга 2. и др. – М.: Изд. АСВ, 1996. – 384с.

7. ГОСТ Р 12.3.047-98 ССБТ. Пожарная безопасность технологических процессов. Общие требования. Методы контроля.

8. РД Методика оценки последствий аварийных взрывов топливно-воздушных смесей.

9. Пожаровзрывоопасность веществ и материалов и средства их тушения/, и др. – М.: Химия, 1990. – 496 с.

10. Легковоспламеняющиеся и горючие жидкости. Справочник/под ред. -Агалакова – М.: Изд-во мин. коммунального хоз-ва, 1956. – 112 с.

11. , Носков и задачи по курсу процессов и аппаратов химической технологии. Учебное пособие – Л.: Химия, 1987. – 576 с.

12. Бережковский и транспортирование химических продуктов. – Л.: Химия, 1982. – 253 с.

13. , Кондратьева безопасных аппаратов для химических и нефтехимических производств. – Л.: Машиностроение. Ленингр. Отделение, 1988. – 303 с.

14. Справочник металлиста. В 5-ти т. Т. 2. Под ред. , – М.: Машиностроение, 1976. – 720 с.

Приложения

Приложение А

Таблица А1 - Свойства газов и некоторых жидкостей

Название

Плотность вещества,

кг/м3 (при 20 оС)

Плотность по

воздуху газа (пара)*

Коэффициент адиабаты

Ацетилен

Диоксид азота

Диоксид углерода

Кислород

Пропилен

Примечание: Для определения плотности паров используется плотность воздуха при 0 оС.

Приложение Б

Таблица Б1 - Конструкционные материалы

Материал

Предел прочности,

σв МПа

Назначение

Ст3пс, Ст3сп (гр. А)

Для деталей машин, станков, резервуаров.

Для хранения разбавленной азотной и серной кислоты, раствора аммиачной селитры и аналогичных веществ с плотностью 1400 кг/м3.

Для хранения агрессивных химических продуктов плотностью 1540 кг/м3.

При изготовлении трубопроводов и аппаратов. Резервуары для хранения сжиженных газов, железнодорожные цистерны.

Трубопроводы, давление до 100 кгс/см2.

Северного исполнения для деталей машин.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ, НАУКИ, молодежи

И спорта УКРАИНЫ

ОДЕССКИЙ НАЦИОНАЛЬНЫЙ МОРСКОЙ УНИВЕРСИТЕТ


Кафедра «Охрана и безопасность на море»

гражданская защита

и оценка последствий в чрезвычайных ситуациях

Методические указания

для проведения самостоятельной работы студентов по дисциплине «гражданская защита»

Лабораторная работа № 5.

Тема: “Оценка инженерной обстановки чрезвычайных ситуаций

Одесса 2012

ЛАБОРАТОРНАЯ РАБОТА № 5

Тема: “Оценка инженерной обстановки чрезвычайных ситуаций”

Учебная цель :освоение методики оценки инженерной обстановки ЧС на взрыво- и пожароопасных объектах

Материальное обеспечение: Методические указания«Гражданская защита и оценка последствий чрезвычайных ситуаций. Часть 1. »; Демиденко Г.П., и др. Справочник. «Защита объектов ОНХ от ОМП ». К.,1986; таблицы.

План проведения занятия:

Вопросы, подлежащие изучению Время, мин
1. Определение понятий и анализ исходных данных. Самост. работа
2. Методика расчета параметров зоны разрушений при взрыве ГВС в открытой атмосфере. Самост. работа
3. Расчет параметров зоны разрушений при взрыве ГВС в открытой атмосфере (пример).
4. Решение задач по оценке инженерной обстановки в зонах чрезвычайных ситуаций.

Отчетность: Выполнить задания 3-4. Законспектировать в тетрадь все вопросы плана занятия. Произвести расчеты представленных задач по оценке инженерной обстановки в ЧС на взрыво- и пожароопасных объектах и сделать соответствующие выводы.

Задания 1-2 выносится на самостоятельную работу (срок выполнения не более одной недели).

Оценка инженерной обстановки чрезвычайных ситуаций на взрыво- и пожароопасных объектах

Общие сведения

Инженерная обстановка - это совокупность последствий стихийных бедствий, аварий (катастроф), а также первичных и вторичных поражающих факторов современных средств поражения, в результате которых имеет место разрушение зданий, сооружений, оборудования, коммунально-энергетических объектов, средств связи и транспорта, мостов, плотин, аэродромов и т. д., что существенно влияет на устойчивость работы объектов экономики и жизнедеятельность населения. Особую опасность с точки зрения частоты возникновения, возможных потерь и полученных убытков представляют собой взрывы, которые могут привести к человеческим жертвам, разрушению производственных сооружений, нарушению производственной деятельности важных объектов на долгое время.

Взрыв – это процесс быстрого освобождения большого количества энергии в ограниченном объеме за короткий промежуток времени. При этом в окружающей среде образуется и распространяется взрывная волна. Взрыв несет опасность поражения людей и обладает разрушительной способностью. Взрывы могут быть направленными или объёмными .

По виду взрывчатого вещества (ВВ) различают взрывы конденсированных ВВ (тротил, гексоген, порох и т. п.), взрывы газопаровоздушных смесей (ГПВС) и аэрозолей (пылевоздушных смесей).

Основными поражающими факторами взрыва являются: воздушная ударная волна (УВ) и осколочные поля, создаваемые летящими обломками разного рода объектов техногенного образования, строительных деталей и т. д.

Основными параметрами поражающих факторов взрыва являются:

– воздушной ударной волны – избыточное давление во фронте (ΔР ф ), скоростной напор воздуха (ΔР ск ) и время действия избыточного давления во фронте (tΔР ф );

– осколочного поля – количество осколков, их кинетическая энергия и радиус разлета.

Однако на практике в качестве определяющего параметра воздушной ударной волны принимают избыточное давление во фронте волны. За единицу измерения ΔР ф в системе СИ принят Паскаль (Па ), внесистемная единица – кгс/см². Соотношения: 1 Па = 1 Н/м² = 0,102 кгс/см²; 1 кгс/см² = 98,1 кПа ≈ 100 кПа.

На промышленных предприятиях наиболее взрывоопасными являются образующиеся в нормальных или аварийных условиях газо-паровоздушные смеси (ГПВС) и пылевоздушные смеси (ПВС). Из ГПВС наиболее опасны взрывы смесей углеводородных газов с воздухом, а так же паров легковоспламеняющихся горючих жидкостей. Взрывы ПВС происходят на мукомольном производстве, на зерновых элеваторах, при обращении с красителями, при производстве пищевых продуктов, лекарственных препаратов, на текстильном производстве. В результате действия поражающих факторов взрыва происходит разрушение или повреждение зданий, сооружений, технологического оборудования, транспортных средств, элементов объекта экономики (ОЭ), гибель людей.

Особенностями безопасной работы ОЭ в мирное время в условиях взрывов являются различные условия оценки безопасности существующих взрывоопасных конструкций на территории ОЭ.

Такими условиями являются:

1) оценка безопасности ОЭ при уже встроенных взрывоопасных конструкциях;

2) оценка безопасности ОЭ при установке новых взрывоопасных конструкций;

3) оценка безопасности проектирующихся предприятий с взрывоопасными конструкциями.

Наиболее частыми случаями в условиях Украины является оценка безопасности при уже встроенных взрывоопасных конструкциях.

При втором и третьем случае, возникает необходимость минимаксных решений, т. е. обеспечение минимума финансовых затрат при максимуме безопасности работы .

Максимум безопасности может обеспечиваться заглублением взрывоопасных конструкций, увеличением расстояния до зданий и сооружений предприятия и другими мероприятиями, связанными с контролем, сигнализацией, охраной и т. д.

Оценка инженерной обстановки объекта включает:

  1. Определение масштабов и степени разрушения элементов объекта в целом, степени разрушений зданий, объектов и др., в том числе защитных сооружений для укрытия рабочих и служащих, размеры зон завалов, объема инженерных работ, возможности объектовых и приданных формирований по проведению аварийно-спасательных и неотложных работ (АСиНР).
  2. Анализ их влияния на устойчивость работы отдельных элементов и объекта в целом, а также жизнедеятельность населения.
  3. Выводы об устойчивости отдельных элементов и объекта в целом к действию поражающих факторов и рекомендаций по ее повышению, предложения по осуществлению аварийно-спасательных и неотложных работ.

Исходными данными для оценки инженерной обстановки являются :

– сведения о наиболее вероятных стихийных бедствиях, авариях (катастрофах), противнике, его намерениях и возможностях по применению оружия массового поражения (ОМП) и других современных средств поражения;

– характеристики первичных и вторичных поражающих факторов средств поражения;

– характеристики защитных сооружений для укрытия рабочих и служащих;

– инженерно-технический комплекс организации и его элементов.

После оценки инженерной обстановки и выводов из нее подготавливают предложения по инженерному обеспечению АСиНР. В предложениях по инженерному обеспечению указываются:

– объекты города, района, на которых необходимо сосредоточить основные усилия инженерных сил и средств;

– основные инженерные мероприятия по обеспечению ввода сил гражданской защиты (ГЗ) в очаги поражения;

– мероприятия по организации неотложных работ на коммунально-энергетических сетях;

– организация инженерного обеспечения спасательных работ на объектах и в жилой зоне;

– общие объемы инженерных работ, потребность в силах и средствах для их выполнения;

– порядок использования имеющихся в наличии формирований инженерной техники.

Объем и сроки проведения АСиНР (аварийно-спасательных и неотложных работ) зависят от степени разрушения зданий, сооружений и объектов экономики. При определении степени разрушения учитывается характер разрушения, ущерб и возможность дальнейшего использования и восстановления.

Приняты следующие степени разрушений: полное, сильное, среднее и слабое, Каждой степени разрушения отвечает свое значение ущерба, объема АСиНР, а также объемы и сроки проведения восстановительных работ.

R 50 - ∆P ф ≥ 50 кПа – зона полных разрушений - разрушение всех элементов зданий, включая подвальные помещения, люди получают тяжелые переломы, разрывы внутренних органов, возможен летальный исход. Убытки составляют более 70 % стоимости основных производственных фондов. Здания и сооружения восстановлению не подлежат.

R 30 - ∆P ф = 30…50 кПа – зона сильных разрушений – разрушение частей стен и перекрытий верхних этажей, трещины в стенах, деформация перекрытий нижних этажей, при этом люди могут получить сильные вывихи, переломы, ушибы головы. Убытки составляют 30 – 70 % стоимости основных производственных фондов, возможно ограниченное использование мощностей, которые сохранились. Восстановление возможно путем капитального ремонта.

R 20 - ∆P ф = 20…30 кПа – зона средних разрушений – разрушение второстепенных элементов зданий и сооружений (кровель, перегородок, оконных и дверных рам), возможное появление трещин в стенах. Перекрытия, как правило, не рухнувшие, подвальные помещения сохранились, поражение людей – в основном обломками конструкций. Убытки составляют 10 – 30 % стоимости основных производственных фондов. Промышленное оборудование, техника, транспортные средства восстанавливаются в порядке среднего ремонта, а здания и сооружения – после текущего или капитального ремонта.

R 10 - ∆P ф = 10…20 кПа – зона слабых разрушений – разрушение оконных и дверных заполнений, перегородок, подвалы и нижние этажи сохранились и пригодны к временному использованию после текущего ремонта зданий, сооружений, оборудования и коммуникаций. Убытки составляют до 10 % стоимости основных производственных фондов (зданий, сооружений). Восстановление возможно путем текущего ремонта.

Для взрывоопасных ОЭ наиболее характерны аварии с выбросом газо-паровоздушных смесей (ГПВС) углеводородных веществ с образованием детонационных взрывов. Ниже дается методика оценки зон разрушений для аварии с выбросом газо-паровоздушных смесей.

Методика расчета параметров зоны ЧС (разрушений) при взрыве ГПВС в открытой атмосфере

При взрыве ГПВС образуется зона ЧС с ударной волной (УВ), вызывающей разрушения зданий, оборудования и т. п. аналогично тому, как это происходит от УВ ядерного взрыва. В данной же методике зону ЧС при взрыве ГПВС делят на 3 зоны: зона детонации (детонационной волны); зона действия (распространения) ударной волны; зона воздушной УВ (Рис. 24).

Рис. 24. Зоны чрезвычайной ситуации при взрыве газо-паровоздушной смеси.

r 1 – радиус зоны детонационной волны (зона I); r 2 – радиус зоны действия УВ взрыва (зона II); r 3 – радиус зоны действия воздушной УВ (зона III).

Зона детонационной волны (зона I ) находится в пределах облака взрыва. Радиус этой зоны r 1 ,м приближенно может быть определен по формуле

Q - количество взрывоопасной ГПВС, хранящейся в емкости, т.

17,5 – эмпирический коэффициент, который позволяет учесть различные условия возникновения взрыва.

В пределах зоны I действует избыточное давление (ΔР ф ), которое принимается постоянным ΔР ф1 = 1700 кПа.

Зона действия УВ взрыва (зона II ) – охватывает всю площадь разлета ГПВС в результате ее детонации. Радиус этой зоны:

r 2 = 1,7 r 1

Избыточное давление в пределах зоны II изменяется от 1350 кПа до 300 кПа и находится по формуле:

ΔР ф2 = 1300(r 1 /r ) + 50 , где

r – расстояние от центра взрыва до рассматриваемой точки, м.

В зоне действия воздушной УВ (зона III ) – формируется фронт УВ, распространяющийся по поверхности земли. Радиус зоны r 3 >r 2 , и r 3 - это расстояние от центра взрыва до точки, в которой требуется определить избыточное давление воздушной УВ (ΔР ф3): r 3 =r . Избыточное давление в зоне III в зависимости от расстояния до центра взрыва рассчитывается по формуле:

ΔР ф3 = , при Ψ ≤ 2 ,

ΔР ф3 = , при Ψ ≥ 2 ,

где Ψ = 0,24r 3 /r 1 = (0,24 r )/(17,5 ) – относительная величина.

Степени разрушений элементов объекта при различных избыточных давлениях ударной волны приведены в таблице 16.

Расстояния (м )от центра взрыва до внешних границ зон разрушения (R i )рассчитываются по формуле:

r 1 – радиус зоны детонационной волны;

ψ – определенный коэффициент, который принимается равным:

– для зоны слабых разрушений ψ 10 = 2,825;

– для зоны средних разрушений ψ 20 = 1,749;

– для зоны сильных разрушений ψ 30 = 1,317;

– для зоны полных разрушений ψ 50 = 1,015.

Площади зон разрушения и очага поражения рассчитываются по формуле:

S = π R ² , где

R – радиус каждой из зон разрушений.

ПРИКАЗ от 11 марта 2013 года N 96 Об утверждении Федеральных норм и правил в области промышленной безопасности Общие правила взрывобезопасности для взрывопожароопасных химических, нефтехимических и нефтеперерабатывающих производств

Приложение N 3

к Федеральным нормам и правилам

в области промышленной безопасности

"Общие правила взрывобезопасности для

взрывопожароопасных химических,

нефтехимических и нефтеперерабатывающих

производств", утверждённым приказом

Федеральной службы по экологическому,

технологическому и атомному надзору

Расчет участвующей во взрыве массы вещества и радиусов зон разрушений

В целях обоснования безопасного размещения установок, зданий, сооружений на территории взрывопожароопасного производственного объекта в общем случае следует проанализировать риск взрыва топливно-воздушных смесей (далее - ТВС), образующихся при аварийном выбросе опасных (горючих, воспламеняющихся) веществ. Риск взрыва является мерой опасности, характеризующая возможность и тяжесть последствий взрыва. Оценка риска взрыва является частью анализа риска аварии.

Расчет зон поражения, разрушения (последствий взрыва) необходимо применять при выборе технических мероприятий по защите объектов и персонала от ударно-волнового воздействия взрыва парогазовых сред, а также твердых и жидких химически нестабильных соединений (перекисные соединения, ацетилениды, нитросоединения различных классов, продукты осмоления, трихлористый азот), способных взрываться.

Расчеты размеров зон поражения следует проводить по одной из двух методик:

1) методика оценки зон поражения, основанная на "тротиловом эквиваленте" взрыва ТВС;

2) методика, учитывающая тип взрывного превращения (детонация/дефлаграция) при воспламенении ТВС.

1. Методика расчета "тротилового эквивалента" дает ориентировочные значения участвующей во взрыве массы вещества без учета дрейфа облака ТВС. В данной методике приняты следующие условия и допущения.

1.1. В расчетах принимаются общие приведенные массы парогазовых сред m и соответствующие им энергетические потенциалы E, полученные при определении категории взрывоопасности технологических блоков согласно приложению N 2 к настоящим Правилам.

Для конкретных реальных условий значения m и E могут определяться другими методами с учетом эффекта диспергирования горючей жидкости в атмосфере под воздействием внутренней и внешней энергий, характера раскрытия технологической системы, скорости истечения горючего продукта в атмосферу и других возможных факторов.

Масса твердых и жидких химически нестабильных соединений Wx определяется по их содержанию в технологической системе, блоке, аппарате.

1.2. Масса парогазовых веществ, участвующих во взрыве, определяется произведением

где z- доля приведенной массы парогазовых веществ, участвующих во взрыве.

В общем случае для неорганизованных парогазовых облаков в незамкнутом пространстве с большой массой горючих веществ доля участия во взрыве может приниматься равной 0,1. В отдельных обоснованных случаях доля участия веществ во взрыве может быть снижена, но не менее чем до 0,02.

Для производственных помещений (зданий) и других замкнутых объемов значения z могут приниматься в соответствии с таблицей N 1.

Таблица N 1

Значение z для замкнутых объемов (помещений)

1.3. Источники воспламенения могут быть постоянные (печи, факелы, невзрывозащищенная электроаппаратура) или случайные (временные огневые работы, транспортные средства), которые могут привести к взрыву парогазового облака при его распространении.

1.4. Для оценки уровня воздействия взрыва может применяться тротиловый эквивалент. Тротиловый эквивалент взрыва парогазовой среды WT (кг), определяемый по условиям адекватности характера и степени разрушения при взрывах парогазовых облаков, а также твердых и жидких химически нестабильных соединений рассчитывается по формулам:

1.4.1. Для парогазовых сред

где 0,4 - доля энергии взрыва парогазовой среды, затрачиваемая непосредственно на формирование ударной волны;

0,9 - доля энергии взрыва тринитротолуола (ТНТ), затрачиваемая непосредственно на формирование ударной волны;

q" - удельная теплота сгорания парогазовой среды, кДж/кг;

qk - удельная энергия взрыва ТНТ, кДж/кг.

1.4.2. Для твердых и жидких химически нестабильных соединений

где Wk - масса твердых и жидких химически нестабильных соединений;

q k- удельная энергия взрыва твердых и жидких химически нестабильных соединений.

1.5. Зоной разрушения считается площадь с границами, определяемыми радиусами R , центром которой является рассматриваемый технологический блок или наиболее вероятное место разгерметизации технологической системы. Границы каждой зоны характеризуются значениями избыточных давлений по фронту ударной волны ΔP и соответственно безразмерным коэффициентом K .

Классификация зон разрушения приводится в таблице N 2.

Таблица N 2

Классификация зон разрушения

1.5.1. Радиус зоны разрушения (м) в общем виде определяется выражением:

где K - безразмерный коэффициент, характеризующий воздействие взрыва на объект.

При массе паров m более 5000 кг радиус зоны разрушения может определяться выражением:

1.5.2. Для выполнения практических инженерных расчетов радиусы зон разрушения могут определяться выражением

где при m < 5000 кг

или при m > 5000 кг

2. Методика, учитывающая тип взрывного превращения (детонация/дефлаграция) при воспламенении ТВС.

2.1. Для более точных расчетов зон разрушения и оценки риска взрыва рекомендуется использовать следующие соотношения.

Масса вещества, способного участвовать во взрыве, определяется путем интегрирования концентрации выброшенного при аварии горючего вещества по пространству, ограниченному поверхностями Σ вкпр и ∑ нкпр по формуле:

где х, у, z - пространственные переменные, ΣВКПР и Σ НКПР - поверхности в пространстве достижения соответственно верхнего и нижнего концентрационных пределов, c (x, y, z, t0) - распределение концентрации в момент времени t0, кг/м3; t0- момент времени воспламенения или момент времени, когда во взрывоопасных пределах находится максимальное количество топлива, с.

Рассчитываются основные параметры воздушных ударных волн (избыточное давление ΔP и импульс волны давления I) в зависимости от расстояния до центра облака (в том числе с учетом возможного дрейфа облака ТВС).

Для вычисления параметров воздушной ударной волны на заданном расстоянии R от центра облака при детонации облака ТВС предварительно рассчитывается соответствующее безразмерное расстояние по соотношению:

где E - эффективный энергозапас ТВС, Дж (E = m·q, где q - теплота сгорания топлива в облаке).

В случае детонации облака газовой ТВС расчет производится по следующим формулам:

Зависимости (13) и (14) справедливы для значений Rx больших величины Rk=0,25. В случае если Rxk , величина Px полагается равной 18, а величина Ix=0,16.

В случае дефлаграционного взрывного превращения облака ТВС к параметрам, влияющим на величины избыточного давления и импульса положительной фазы, добавляются скорость видимого фронта пламени Vr и степень расширения продуктов сгорания σ. Для газовых смесей принимается σ=7, для гетерогенных - σ=4. Для расчета параметров ударной волны при дефлаграции гетерогенных облаков величина эффективного энергозапаса смеси домножается на коэффициент (σ-1)/σ. Величина Vr определяется исходя из взрывоопасных свойств горючего вещества и загроможденности окружающего пространства, влияющего на турбулизацию фронта пламени.

Безразмерные давление P x1 и импульс фазы сжатия I x1 определяются по соотношениям:

Px1=((0,83/Rx-0,14/R2x);

Ix1=(V2/C0)2((σ-1/σ)(1-0,4(σ-1)V2/σC0)x(0,06/Rx+0,01/R2x-0,0025/R3x).

Последние два выражения справедливы для значений Rx, больших величины Rкр= 0,34, в противном случае вместо Rx в соотношения (15) и (16) подставляется величина R кр.

Далее вычисляются величины Px2 и Ix2 , которые соответствуют режиму детонации и для случая детонации газовой смеси рассчитываются по соотношениям (11), (12), а для детонации гетерогенной смеси - по соотношениям (13), (14). Окончательные значения Px и Ix выбираются из условий:

Px= min (Px1 , Px2) : Ix =min (Ix1, Ix2) (17)

После определения безразмерных величин давления и импульса фазы сжатия вычисляются соответствующие им размерные величины:

I=Ix (P0)2/3E1/3/C0 (19)

2.2. Для расчета условной вероятности разрушения объектов и поражения людей ударными волнами используется пробит-функция, значение которой определяется следующим образом:

а) вероятность повреждений стен промышленных зданий, при которых возможно восстановление зданий без их сноса, может оцениваться по соотношению:

Δ P- избыточное давление, Па;

I - импульс, кг·м/с;

б) вероятность разрушений промышленных зданий, при которых здания подлежат сносу, оценивается по соотношению.

Pr2=5-0,22 .lnV2 (21)

При взрывах ТВС внутри резервуаров и другого оборудования, содержащего газ под давлением, в общем случае следует учитывать опасность разлета осколков и последующее развитие аварии, сопровождаемое "эффектом домино" с распространением аварии на соседнее оборудование, если оно содержит опасные вещества.

в) вероятность длительной потери управляемости у людей (состояние нокдауна), попавших в зону действия ударной волны при взрыве облака ТВС, может быть оценена по величине пробит-функции:

Pr3= 5-5.74·InV3 (22)

Вероятность отброса людей волной давления оценивается по величине пробит-функции:

При использовании пробит-функции в качестве зон 100-процентного поражения принимаются зоны поражения, где значение пробит-функции достигают величины, соответствующей вероятности 90 процентов. В качестве зон безопасных с точки зрения воздействия поражающих факторов принимается зоны поражения, где значение пробит-функции достигают величины, соответствующей вероятности 1 проценту.

2.3. Вероятность гибели людей, находящихся в зданиях.

Для расчета условной вероятности гибели людей, находящихся в зданиях, используются данные о гибели людей при разрушении зданий при взрывах и землетрясениях. Исходя из типа зданий и избыточного давления ударной волной, оценивается степень разрушения производственных и административных зданий. Данные приведены в таблице N 3. Условная вероятность травмирования и гибели людей определяется по таблице N 4.

Данные уточняются при их обосновании с указанием источника информации.

Таблица N 3

Данные о степени разрушения производственных, административных зданий и сооружений, имеющих разную устойчивость

Тип зданий, сооружений

Разрушение при избыточном давлении на фронте ударной волны, кПа

Промышленные здания с легким каркасом и бескаркасной конструкцией

Складские кирпичные здания

Одноэтажные складские помещения с металлическим каркасом и стеновым заполнением из листового металла

Бетонные и железобетонные здания и антисейсмические конструкции

Здания железобетонные монолитные повышенной этажности

Котельные, регуляторные станции в кирпичных зданиях

Деревянные дома

Подземные сети, трубопроводы

Трубопроводы наземные

Кабельные подземные линии

Цистерны для перевозки нефтепродуктов

Резервуары и емкости стальные наземные

Поземные резервуары

Таблица N 4

Зависимость условной вероятности поражения человека с разной степенью тяжести от степени разрушения здания

Величина индивидуального риска для i-го человека или риска разрушения i-го здания Ri (год -1) определяется по формуле (25).

где (Pi) принимается равной величине потенциального риска в j-ой области территории, год-1 (определяется методами количественной оценки риска) при расчете индивидуального риска, или принимается равной прогнозируемой частоте реализации в j-ой области территории нагрузок (давление, импульс), способных привести к разрушению i-го здания при расчете риска разрушения зданий;

(Pi) - принимается равной вероятности присутствия человека в j-ой области территории при расчете индивидуального риска, или принимаются равной 1 в случае, если i-e здание располагается в j-ой области территории и нулю, в противном случае, при расчете риска разрушения зданий;

Год-1 - число областей, на которые условно можно разбить территорию объекта, при условии, что величина потенциального риска на всей площади каждой из таких областей можно считать одинаковой.

Электронный текст документа

подготовлен и сверен по:

Бюллетень нормативных актов федеральных

органов исполнительной власти,

7.3. РАСЧЕТ ХАРАКТЕРИСТИК ВЗРЫВА

Основным поражающим действием взрывчатых веществ является ударная волна. Поэтому для определения поражающего действия взрывчатого вещества необходимо рассчитать избыточное давление взрыва

, (7.15)

где р – давление на фронте ударной волны;

р 0 – давление невозмущенного воздуха – атмосферное давление (101кПа).

Величина D р зависит от типа взрывчатого вещества, массы взорванного заряда, расстояния от центра взрыва и характера подстилающей поверхности.

Расчет величины избыточного давления D р проводится в два этапа. На первом этапе находится приведенный радиус зоны взрыва по формуле

, (7.16)

где R – расстояние от центра взрыва, м;

М – масса заряда, кг;

К – коэффициент, учитывающий характер подстилающей поверхности;

Т Э – тротиловый эквивалент взрывчатого вещества.

В табл. 7.6 приведены значения коэффициента К для разных типов подстилающих материалов.

Таблица 7.6

Значения коэффициента К для разных материалов

Материал подстилающей поверхности

Коэффициент К

Металл

1.00

Бетон

0.95

Дерево

0.80

Грунт

0.60

Тротиловый эквивалент, как было показано выше, – это отношение массы взрывчатого вещества к массе тротила, создающей одинаковое поражающей действие. При Т Э < 1 взрывчатое вещество обладает более сильным разрушающим действием, чем тротил (на один килограмм взрывчатого вещества); при Т Э = 1 взрывчатое вещество имеет такую же разрушающую силу, как и тротил; при Т Э > 1 взрывчатое вещество будет производить меньшее разрушающее воздействие, чем тротил. В табл. 7.3 были приведены значения тротилового эквивалента для промышленных взрывчатых веществ. В табл. 7.7 приведены значения тротилового эквивалента для некоторых боевых взрывчатых веществ.

Таблица 7.7

Значение тротилового эквивалента

для боевых взрывчатых веществ

Взрывчатое вещество

Т Э

Порох

0.66

Аммонал

0.99

Тротил

1.00

Тетрил

1.15

Гексоген

1.30

ТЭН

1.39

Тритонал

1.53

На втором этапе по рассчитанному значению приведенного радиуса (7.16) рассчитывается величина избыточного давления D р . При этом зависимости от величины используются разные формулы. Для значений 6.2 расчет избыточного давления взрыва проводится по формуле:

, кПа. (7.17)

Для значений > 6.2 расчетная формула для избыточного давления взрыва имеет вид:

, кПа. (7.18)

Используя рассчитанные значения избыточного давления взрыва , можно провести оценку степени разрушения, производимого взрывом. При оценке поражающего действия взрывчатого вещества выделяют четыре зоны разрушения объектов, характеристики которых приведены в табл. 7.8.

Таблица 7.8

Зоны разрушения объектов

при разных значениях избыточного давления взрыва

Зона разрушения

D р , кПа

Полное разрушение

Более 50

Сильные разрушения

30 ÷ 50

Средние разрушения

20 ÷ 30

Слабые разрушения

10 ÷ 20

Для оценки степени разрушения зданий и сооружений при конкретном взрыве можно использовать табл. 7.9, в которой представлены предельные значения избыточного давления взрыва D р , вызывающие различные степени разрушения.

Таблица 7.9

Значения предельного избыточного давления,

вызывающие различные разрушения зданий и сооружений

D р , кПа

Разрушение

D р , кПа

Разрушение

D р , кПа

Разрушение

0.5÷3.0

Частичное разрушение остекления

Разрушение перегородок, оконных рам

Разрушение кирпичных и блочных стен

3÷7

Полное разрушение остекления

Разрушение перекрытий

Разрушение железобетонных конструкций

Рассмотрим порядок расчета избыточного давления взрыва на следующем примере.

Требуется определить поражающее действие при взрыве заряда тротила массой 100 кг на расстоянии от здания R = 2 м на открытом грунте.

Вначале определим избыточное давление взрыва D р при взрыве тротила по формуле (7.16). Коэффициент К для открытого грунта находим по табл. 7.6. Он составляет 0.60. Тротиловый эквивалент для тротила Т Э = 1 (табл. 7.7).

Пример №1

Взрыв шарового газгольдера сжатого воздуха объемом V = 600 м3 произошел вследствие превышения регламентированного давления. Аппарат рассчитан для работы под давлением Р = 0,8 МПа. Взрыв произошел при давлении Р = 2,3 МПа. Плотность газа при нормальном давлении с = 1,22 кг/м3, показатель адиабаты г = 1,4. Оценить последствия взрыва сжатого воздуха в шаровом газгольдере (определить радиусы зон различной степени поражения УВВ зданий, сооружений и человека) и определить вероятность поражения человека на расстоянии R = 50 м.

Определяется перепад давлений, преобразовав формулу (3):

ДР = 2,3 - 0,1 = 2,2 МПа

Рассчитывается плотность газа по уравнению (5):

с = 1,22 · (2,3/0,1)1/1,4 = 11,46 кг/м3

Полная масса газа:

С = 11,46 · 600 = 6873 кг

Q = 2,2 / = 0,48 МДж/кг

Тротиловый эквивалент взрыва составит:

qтнт = 0,48 · 6873 / 4,24 = 778 кг

Эквивалент по ударной волне:

qу.в. = 0,6 · 778 = 467 кг

q = 2 · 467 = 934 кг

Результаты расчета приведены ниже (таблица 4).

Таблица 4 - Радиусы зон воздействия УВВ

ДРфр, кПа

Для определения вероятности поражения человека на заданном расстоянии по формулам (12,13) рассчитываются избыточное давление во фронте волны и удельный импульс для расстояния 50 м:

50/(9341/3) = 5,12

ДРфр = 0,084/5,12 + 0,27/5,122 + 0,7/5,123 = 31,9 кПа.

I = 0,4 · 9342/3/50 = 0,76 кПа·с

Условная вероятность поражения избыточным давлением человека, находящегося на 50 м от эпицентра аварии, определяется с помощью пробит функции Pr, которая рассчитывается по формуле (14):

V = (17500/(31,9·103))8,4 + (290/(0,79·103))9,3 = 0,0065

Pr = 5 - 0,26 · ln(0,0065) = 6,31

С помощью таблицы 3 определяется вероятность. Человек, находящийся на расстоянии 50 м, может получить травмы различной степени тяжести с вероятностью 91%.

Пример №2

Взрыв шарового газгольдера диоксида углерода объемом V = 500 м3 (радиус сферы 4,95 м) произошел вследствие превышения регламентированного давления. Аппарат изготовлен из стали 09Г2С толщиной стенки 16 мм и рассчитан для работы под давлением Р = 0,8 МПа. Временное сопротивление разрушения материала ув = 470 МПа. Плотность газа при нормальном давлении с = 1,98 кг/м3, показатель адиабаты г = 1,3. Оценить последствия взрыва сжатого диоксида углерода в шаровом газгольдере (определить радиусы зон различной степени поражения УВВ зданий, сооружений и человека) и определить вероятность поражения человека на расстоянии R = 120 м.

Разрушающее давление определяется по формуле (2):

ДP = 2 · 0,016 · 470/4,95 = 3 МПа

Определяется давление парогазовой смеси в емкости по формуле (3):

Р = 3 + 0,1 = 3,1 МПа

Рассчитывается плотность газа по уравнению (5) при давлении Р:

с = 1,98 · (3,1/0,1)1/1,3 = 28,05кг/м3

Полная масса газа:

С = 28,05 · 550 = 14026 кг

По формуле (7) рассчитывается удельная энергия газа:

Q = 3 / = 0,36 МДж/кг

Тротиловый эквивалент взрыва газа составит:

qтнт = 0,36 · 14026 / 4,24 = 1194 кг

Эквивалент по ударной волне:

qу.в. = 0,6 · 1194 = 717 кг

Применительно к наземному взрыву принимается значение:

q = 2 · 717 = 1433 кг

Методом подбора величины расстояния от эпицентра взрыва по формулам (12,13) определяются радиусы зон различной степени поражения УВВ зданий, сооружений и человека, указанные в таблице 2.

Результаты расчета приведены ниже (таблица 5).

Таблица 5 - Радиусы зон воздействия УВВ

ДРфр, кПа

Для определения вероятности поражения человека на заданном расстоянии по формулам (12,13) рассчитываются избыточное давление во фронте волны и удельный импульс для расстояния 120 м:

120/(14333) = 10,64

ДРфр = 0,084/10,64 + 0,27/10,642 + 0,7/10,643 = 10,9 кПа.

I = 0,4 · 14332/3/120 = 0,42 кПа·с

Условная вероятность поражения избыточным давлением человека, находящегося на 120 м от эпицентра аварии, определяется с помощью пробит функции Pr, которая рассчитывается по формуле (14):

V = (17500/(10,9*103))8,4 + (290/(0,42*103))9,3 = 0,029

Pr = 5 - 0,26 * ln(0,029) = 5,92

С помощью таблицы 3 определяется вероятность. Человек, находящийся на расстоянии 120 м, может получить травмы различной степени тяжести с вероятностью 82%.

https://promvint.uz/

Включайся в дискуссию
Читайте также
Обязательный аудит: критерии проведения Обязательный аудит критерии малое предприятие
Составление смет на проектные и изыскательские работы
Транспортный налог в московской области Ставка по транспортному налогу в году