Подпишись и читай
самые интересные
статьи первым!

Атмосферное электричество на организм человека охрана труда. Обеспечение безопасности при эксплуатации электроустановок и защита от неблагоприятного действия электричества атмосферное электричество и меры зашиты от прямого воздействия и вторичного проявле

Для защиты от статического электричества применяют мероприятия и средства, направленные на предотвращение или уменьшение интенсивности процесса образования зарядов, а также обеспечивающие условия для быстрой релаксации зарядов.

К первой группе мероприятий относится уменьшение скоростей перемещения твердых, сыпучих и жидких материалов. Многие жидкости, например, нефтепродукты, легко электризуются. Подачу таких жидкостей необходимо производить таким образом, чтобы исключить их бурное перемешивание и разбрызгивание. Сливная труба должна доходить до дна бака, а струя направляется вдоль оси стенки. Если в емкости нет остатка жидкости, то скорость первоначального заполнения не должна превышать 0,7 м/с, а затем 4 м/с.

Ко второй группе относятся следующие средства. Суда, цистерны, трубопровода заземляются, причем сопротивление заземления должно составлять не более 100 Ом. Для этого используют установленные заземлители электроустановок. Автоцистерны заземляют с помощью металлической цепи, постоянно соприкасающейся с землей, а для железнодорожных цистерн заземлителем является рельсовый путь.

При увеличении влажности соприкасающихся поверхностей водяная пленка экранирует эмиссию электронов и обеспечивает растекание зарядов по поверхности чел, что резко снижает потенциалы зарядов. Для нейтрализации образовавшихся зарядов используют ионизаторы воздуха, которые создают ионы обоих знаков. Ионы нужного знака притягиваются и нейтрализуют образовавшиеся заряды.

Защита человека от статического электричества обеспечивается использованием антистатической одежды и обуви.

Требуемая степень защиты зданий и сооружений от воздействия атмосферного электричества, от взрывопожароопасности разрабатывается на основе классификации этих объектов. Установлены три категории молниезащиты (I, II, Ш) и два типа (А, Б) зон защиты объектов от прямых ударов молнии. Зона защиты типа А обеспечивает перехват на пути к объекту не менее 99,5% молний, а типа Б - не менее 95%. Объекты I и II категорий (взрывоопасные) защищаются от всех четырех видов воздействия атмосферного электричества (п. 5.4), а объекты III категории - пожароопасные и высотные (жилые здания, башни, вышки, трубы) - защищаются от прямых ударов молний и от заноса высоких потенциалов внутрь зданий.

Защита от электростатической индукции заключается в заземлении металлического оборудования, расположенного внутри и вне здания. Для этого применяют специальное заземление или заземление электроустановок с сопротивлением не более 10 Ом.

Защита от электромагнитной индукции осуществляется установкой металлических перемычек между трубопроводами и протяженными коммуникациями, которые сближаются на расстояния до 10 см.

Защита от заноса высоких потенциалов внутрь зданий обеспечивается посредством присоединения металлокоммуникаций на входе в здание к защитному заземлению.

Для защиты объектов от прямых ударов молнии выполняются молниеотводы стержневого, тросового, сетчатого типа. Молниеотвод стержневого типа (рис. 6.12) состоит из опоры (1), молниеприемникa (2), токовода (3) и заземлителя (4). Зона защиты молниеотвода - это часть пространства, в пределах которого обеспечивается защита от прямых ударов молнии. Для стержневого молниеотвода эта зона примерно ограничена конусом, основание которого имеет радиус r = 1,5 h.

Атмосферное статическое электричество

Заряды статического атмосферного электричества возникают в результате разряда молний. Молния поражает в первую очередь самые высокие сооружения и заземленные, т.к. их проводимость стремится к бесконечности. Зашита от прямого удара молнии организуется с помощью молниеотводов, которые состоят из трех элементов:

1)Молниеприемник (принимает разряд молнии)

2)Токоотвод (должен направить принятый разряд в землю)

3)Защитное заземление (отдает заряд земле)

Сопротивление молниеотвода должна быть ≤10 Ом

В зависимости от конструкции молниеприемника молниеотводы бывают:

1) Стержневые

2) Тросовые

3) Сетчатые, устанавливаются на сооружениях с шли кровлей, ячейка сетки должна быть ≤ 5х5 м

Молниеприемником может служить металлическая кровля, но в этом случае необходимо не менее двух токоотводов. При высоте сооружения более 50 м допускается установка молниеприемника на самом сооружении, но в этом случае необходимо предусмотреть не менее 2х токоотводов, которые должны присоединиться к самостоятельному заземленному контуру. Площадь сечения стержневого молниеприемника должна быть не менее 100 мм 2 , а площадь сечения тросового молниеприемника не менее 35мм 2

На предприятиях по производству строительных материалов и при изготовлении конструкция широко используют и получают в больших количествах вещества и материалы, обладающие диэлекртическими свойствами, что способствует возникновению зарядов статического электричества.

Статич. электр-во образуется в результате трения (соприкосновения или разделения) двух диэлектриков друг о друга или диэлектриков о металлы. При этом на трущихся веществах могут накапливаться электр-е заряды, которые легко стекают в землю, если тело является проводником электричества и оно заземлено. На диэлекртиках электрич-е заряды удерживаются продолжительное время, вследствие чего они получили название статич. электричества.

Процесс возникновения и накопления электр-их зарядов в веществах называют электризацией.

По существующим представлениям статич-е электр-во возникает в результате сложных процессов, связанных с перераспределением электронов и ионов при соприкосновении двух поверхностей неоднородных жидких или твердых веществ. На поверхности соприкосновения образуется двойной электрический слой.

В производственных условиях возникновение и накопление статич. эл-ва происходит:

1) при пневмотранспорте пылевидных и сыпучих материалов, при движении их в аппаратах; дроблении, перемешивании и просеивании; при перемешивании в смесителях;

2) при сливе, наливе и перекачке светлых нефтепродуктов по трубопроводам и резиновым шлангам в резервуарные емкости;

3) при транспортировании сжатых и сжиженных газов по трубам и истечении их через отверстия;

4) в процессах обработки материалов, а также при применении ременных передач и транспортных лент.

5) при движении автотранспортера, тележек на резиновых шинах и людей по сухому изолирующему покрытию.

При определенных условиях в дождевом облаке могут накапливаться электрические заряды. Этому способствуют аэродинамические и термические процессы (восходящие воздушные потоки, конденсация паров на высоте от 1 до 6 км, образование капель, их дробление). В результате этих процессов капли получают суммарный отрицательный заряд и наполняют нижнюю часть облака, а более инерционные положительные ионы воздуха – верхнюю часть. При этом, внутри облака образуется электрическое поле между распределенными разнополярными зарядами.

Таким образом, молния – это электрический разряд в атмосфере между заряженным облаком и землей или между разноименно заряженными частями облака. Разряд имеет преимущественно вид линейной молнии. Направленный вниз заряд между облаком и землей делится на лидерный (начальный) и главный (обратный). Обычно он начинается с прорастания от облака к земле слабо светящегося канала-ступенчатого лидера. При касании головки лидера земли возникает главный разряд. Он связан с нейтрализаций отрицательных зарядов лидера положительными зарядами земли и напоминает короткое замыкание. Главный разряд сопровождается интенсивным свечением, уменьшающимся при приближении к облаку, а также звуком (громом). Этот разряд и воспринимается людьми как молния. Основной источник их поражения – линейная молния.

Грозовой разряд оказывает на человека тепловое воздействие, а также механическое и электромагнитное.

От прямых ударов молнии объекты защищают молниеотводами различных типов и конструкций. Молниеотвод любого типа состоит из молниеприемника, предназначенного для непосредственного приема удара молнии, токоотвода, обеспечивающего отвод тока молнии к заземлению, и заземлителя, отводящего ток молнии в землю. Для крепления молниеприемников и токоотводов предназначены несущие конструкции (опоры).

Принцип действия молниеотводов основан на использовании свойства избирательности поражений молнией более высоких и хорошо заземленных предметов. Поэтому необходимо, чтобы молниеотвод возвышался над защищаемым объектом и имел достаточно хороший контакт с землей. Молниеотвод создает условия для ориентации лидерного разряда в направлении вершины молниеотвода (за счет создания наибольшей напряженности электрического поля на пути между развивающимся лидерным каналом и вершиной молниеотвода). Таким образом, молниеотвод как бы “отбирает” на себя грозовые разряды, возникающие в определенной зоне вокруг него, и, тем самым, экранирует расположенные поблизости от него более низкие объекты.

Пространство вокруг молниеотвода, защищенное от прямых ударов молнии, называется зоной защиты молниеотвода. Защищаемый объект должен полностью входить в зону защиты.



В зависимости от категории здания по устройству молниезащиты и ожидаемого числа поражений молнией в год требуется, чтобы объект полностью располагался в зоне защиты типа А или Б. Зона защиты типа А обладает степенью надежности (на ее границе) не ниже 99,5%, а зона защиты типа Б – не ниже 95%. Это очень высокая степень надежности. Прорыв молнии в зону защиты типа А возможен только в пяти случаях из тысячи ударов, а в зону защиты типа Б – в пяти случаях из ста.

Обычно применяют стержневые, тросовые и сетчатые типы молниеотводов. Для молниезащиты одного или группы строений применяют молниеотводы одного типа, но в ряде случаев целесообразно использовать комбинированные типы молниеотводов (например, тросово-стержневой молниеотвод).

Важным элементом молниеотвода является его заземляющее устройство, т.е. специальная металлическая конструкция, расположенная в земле. Оно служит для безопасного отвода тока молнии в землю.

Конструктивно молниеотводы и их заземляющие устройства должны выполняться следующим образом.

1. Опоры стержневых молниеотводов могут изготавливаться из стали любой марки, железобетона или дерева. Они должны быть рассчитаны на механическую прочность как свободно стоящие конструкции, а опоры тросовых молниеотводов – с учетом натяжения троса и действия на него ветровой и гололедной нагрузке.

2. Стержневые молниеприемники должны быть изготовлены сечением не менее 100 мм² и длиной не менее 200 мм из стали любой марки. Тросовые молниеприемники должны быть выполнены из стальных многопроволочных канатов сечением не менее 35 мм². Соединения молниеприемников с токоотводами и токоотводов с заземлителями должны выполняться, как правило, сваркой. Эти соединения и токоотводы изготовливаются из круглой стали диаметром не менее 6 мм. Токоотводы, прокладываемые по наружным стенам здания, следует располагать не ближе 3 м от входов или в местах, недоступных для прикосновения людей.



3. В качестве естественных заземлителей молниезащиты допускается использование любых конструкций железобетонных фундаментов зданий и сооружений при условии обеспечения непрерывной электрической связи по их арматуре и присоединения ее к закладным деталям. Допускается также использование для молниезащиты всех заземлителей электроустановок, рекомендуемых ПУЭ

4. Должны быть предусмотрены искусственные заземлители. Их следует располагать под асфальтовым покрытием либо в редко посещаемых местах (на газонах, в удалении от грунтовых проезжих и пешеходных дорог) на расстоянии 5 м и более.

30. Статическое электричество: сущность, опасность, методы защиты

При статической электризации во время технологических процессов, сопровождающихся трением, размельчением твердых частиц, пересыпанием сыпучих тел, переливанием жидкостей - диэлектриков, на изолированных от земли металлических частях производственного оборудования возникает электрическое напряжение относительно земли порядка десятков киловольт.

Так, при движении резиновой ленты транспортера в сельс­кохозяйственных агрегатах с электроприводом через клиноременную передачу в устройствах ременной передачи на лен­те (ремне) и на роликах (шкивах) возникают электростати­ческие заряды противоположных знаков большой величины, а потенциалы их достигают 45 кВ. Основную роль при этом играют влажность, давление воздуха и состояние поверхнос­тей лент (ремней) и роликов (шкивов), а также скорость отно­сительного движения (пробуксовки). Аналогично происходит электризация при сматывании тканей, бумаги, пленки и др.

При относительной влажности воздуха 85% и более электростатических зарядов обычно не возникает.

Возникающие в производственных условиях электроста­тические заряды могут служить импульсом, способным при наличии горючих смесей вызвать пожар и взрыв. В ряде случаев статическая электризация тела человека и затем пос­ледующие разряды с тела человека на землю или заземлен­ное производственное оборудование, а также электрический разряд с незаземленного оборудования через тело человека на землю могут вызвать нежелательные болевые и нервные ощущения и быть причиной непроизвольного резкого дви­жения человека, в результате которого он может получить ту или иную механическую травму (ушибы, ранение). "

Устранение опасности возникновения электростатических зарядов достигается следующими мерами: заземлением про­изводственного оборудования и емкостей для хранения лег­ковоспламеняющихся и горючих жидкостей; увеличением электропроводности поверхностей электризующихся тел пу­тем повышения влажности воздуха или применением анти­статических примесей к основному продукту (жидкости, ре­зиновые изделия и др.); ионизацией воздуха с целью увели­чения его электропроводности.

31. Индивидуальные средства защиты от поражения электрическим током.

Электрозащитные средства должны находиться в поме­щениях электроустановок в качестве инвентарного имуще­ства. Они распределяются по местам хранения и это поло­жение должно быть зафиксировано в списках, утвержден­ных главным энергетиком предприятия. Ответственность за своевременное обеспечение персонала и комплектование электроустановок электрозащитными средствами несут на­чальник цеха, службы участка, а в целом по предприятию - главный инженер. Электротехнический персонал получает электрозащитные средства в индивидуальное пользование и отвечает за их правильную эксплуатацию и своевремен­ную отбраковку. Все электрозащитные средства должны быть пронумерованы, храниться в специальных помещениях, шка­фах, ящиках.

При эксплуатации средства защиты должны подвергать­ся периодическим и внеочередным испытаниям (после ре­монта) согласно ПТЭ и ПТБ.

Электрозащитные средства служат для защиты людей, работающих с электроустановками, от поражения электри­ческим током, от воздействия электрической дуги и электро­магнитного поля.

Основные электрозащитные средства защиты, изоляция которых длительно выдерживает рабочее напряжение элект­роустановок, позволяют прикасаться к токоведущим частям, находящимся под напряжением.

Дополнительные электрозащитные средства защиты сами по себе не могут при данном напряжении обеспечить защиту от поражения током, а применяются совместно с основными электрозащитными средствами.

К электрозащитным средствам относятся:

изолирующие штанги (оперативные, для наложения за­земления, измерительные), изолирующие (для операций с предохранителями) и электроизмерительные клещи, указатели напряжения, указатели напряжения для фазировки и т. д.;

изолирующие устройства и приспособления для ремонт­ных работ под напряжением выше 1000 В и слесарно-монтажный инструмент с изолирующими рукоятками для рабо­ты в электроустановках напряжением до 1000 В;

диэлектрические перчатки, боты, галоши, ковры, изолиру­ющие накладки и подставки;

индивидуальные экранизирующие комплекты;

переносные заземления;

оградительные устройства и диэлектрические колпаки;

плакаты и знаки безопасности.

Кроме перечисленных электрозащитных средств при работах в электроустановках следует, при необходимости, применять такие средства индивидуальной защиты, как очки, каски, противогазы, рукавицы, предохранительные монтерские по­яса и страховочные канаты.

Классификация защитных средств в зависимости от напряжения электроустановки приведена в таблице.

Статическое электричество образуется в результате трения (соприкосновения или разделения) двух диэлектриков друг о друга или диэлектриков о металлы. На диэлектриках электрические заряды удерживаются продолжительное время, вследствие чего они получили название статического электричества (ГОСТ 12.1.018-93 ССБТ. Пожаровзрывобезопасность статического электричества).

Явление статической электризации наблюдается в следующих случаях:

В потоке и при разбрызгивании жидкости;

В струе газа или пара;

При соприкосновении и последующем удалении двух твердых разнородных тел (контактная электризация).

Электризация тела человека происходит при работе с наэлектризованными изделиями и материалами. Количество накопившегося на людях электричества может быть вполне достаточным для искрового разряда при контакте с заземленным предметом. Считается, что энергия разряда с тела человека достаточна для зажигания практически всех газо-, паровоздушных и некоторых пылевоздушных горючих смесей.

Действие статического электричества смертельной опасности для человека не представляет. Искровой разряд статического электричества человек ощущает как укол или судорогу. При внезапном уколе может возникнуть испуг и вследствие рефлекторных движений человек может непроизвольно сделать движения, приводящие к падению с высоты, попаданию в опасную зону машин и др.

Длительное воздействие статического электричества неблагоприятно отражается на здоровье работающего, отрицательно сказывается на его психофизическом состоянии.

Допустимые уровни напряженности электростатических полей установлены СанПиН 2.2.4.1191-03 Электромагнитные поля в производственных условиях и ГОСТ 12.1.002.84 ССБТ. Электрические поля промышленной частоты.

Допустимые уровни напряженности электростатических полей устанавливаются в зависимости от времени пребывания на рабочих местах. Предельно допустимый уровень напряженности электростатических полей устанавливается равным 60 кВ/м в течение 1 часа.

Защите от статического электричества подлежат все промышленные, опытно-промышленные и лабораторные установки, в которых применяются или получаются вещества, способные при перемещении или переработке подвергаться электризации, с образованием опасных потенциалов (вещества и материалы с удельным объемным сопротивлением выше 10 Ом∙м), а также взрыво- и пожароопасные производства, отнесенные по классификации ФЗ от 22.07.2008 № 123-ФЗ (в редакции от 13.07.2015) «Технический регламент о требованиях пожарной безопасности». Классификация пожароопасных и взрывоопасных зон применяется для выбора электротехнического и другого оборудования по степени их защиты, обеспечивающей их пожаровзрывобезопасную эксплуатацию в указанной зоне.

Меры защиты от статического электричества:

Предотвращение накопления зарядов на электропроводящих частях оборудования, что достигается заземлением оборудования и коммуникаций;

Уменьшение удельных обычных и поверхностных электрических сопротивлений (увлажнение воздуха от 65% до 67%, если это допустимо по условиям технологического процесса; химическая обработка поверхности электропроводными покрытиями; нанесение на поверхность антистатических веществ; добавление антистатических присадок в горючие диэлектрические жидкости);

Снижение интенсивности зарядов статического электричества (достигается подбором скорости движения веществ, исключением разбрызгивания, дробления и распыления веществ, отводом электростатического заряда, подбором поверхностей трения);

Отвод статического электричества, накапливающегося на людях;

Устройство электропроводящих полов или заземленных зон, помостов и рабочих площадок, заземление ручек дверей, поручней лестниц, рукояток приборов, машин и аппаратов;

Обеспечение работающих токопроводящей обувью, антистатическими халатами.

Мероприятия по защите от прямых ударов молнии

Молния – сильный искровой разряд между двумя облаками или между облаком и землей. Удар молнии в землю - электрический разряд атмосферного происхождения между грозовым облаком и землей, состоящий из одного или нескольких импульсов тока.

Защищаемый объект - здание или сооружение, их часть или пространство, для которых выполнена молниезащита, отвечающая требованиям настоящего норматива.

Устройство молниезащиты - система, позволяющая защитить здание или сооружение от воздействий молнии. Она включает в себя внешние и внутренние устройства. В частных случаях молниезащита может содержать только внешние или только внутренние устройства.

Устройства защиты от прямых ударов молнии (молниеотводы) - комплекс, состоящий из молниеприемников, токоотводов и заземлителей. Устройства защиты от вторичных воздействий молнии - устройства, ограничивающие воздействия электрического и магнитного полей молнии.

Молниеприемник - часть молниеотвода, предназначенная для перехвата молний.

Токоотвод (спуск) - часть молниеотвода, предназначенная для отвода тока молнии от молниеприемника к заземлителю.

Заземляющее устройство - совокупность заземлителя и заземляющих проводников.

Заземлитель - проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через проводящую среду.

Виды ударов молнии:

Прямые удары молнии на объект;

За счет распределения потенциалов (может поражаться соседний объект);

За счет индуктивного эффекта (может поражаться третий объект, например, через почву). Вероятность поражения объекта молнией:

где А, В – длина и ширина здания, h – высота здания, n – коэффициент, учитывающий сколько раз может ударять молния в зависимости от климатического пояса.

Нижнекамск находится в III климатическом поясе, где 40 - 60 раз может ударить молния летом, n = 6.

Защита от прямых ударов молний зданий и сооружений с неметаллической кровлей должна быть выполнена отдельно стоящими или установленными на защищающем объекте стержневыми или тросовыми молниеотводами. При установке молниеотводов на объекте от каждого стержневого молниеприемника или каждой стойки тросового молниеприемника должно быть обеспечено не менее двух токоотводов. При уклоне кровли не более 1/8 может быть использована также молниеприемная сетка из стальной проволоки диаметром не менее 6 мм, прокладываемой в кровле здания. На зданиях и сооружениях с металлической кровлей в качестве молниеприемника должна использоваться сама кровля. При этом все выступающие неметаллические элементы должны быть оборудованы молниеприемниками.

Наружное установки, содержащие горячие сжиженные газы и легковоспламеняющиеся жидкости, должны быть защищены от прямых ударов молнии следующим образом:

Корпуса установок из железобетона, металлические корпуса установок при толщине металла крыши менее 4 мм должны быть оборудованы молниеотводами, установленными на защищаемом объекте или отдельно стоящими молниеотводами;

Металлические корпуса установок и отдельно стоящих резервуаров при толщине крыши 4 мм и более, а также отдельные резервуары объемом менее 200 м 3 независимо от толщины металла крыши, а также металлические кожуха теплоизолированных установок достаточно присоединить к заземлителю;

Для резервуарных парков, содержащих сжиженные газы общим объемом более 8000 м 3 , а также для резервуарных парков с корпусами из металла и железобетона, содержащих горячие и лекговоспламеняющиеся жидкости, при общем объеме группы резервуаров более 100 тыс. м 3 защиту от прямых ударов молнии следует, как правило, выполнять отдельно стоящими молниеотводами;

Для наружных установок в качестве заземлителей защиты от прямых ударов молнии следует использовать железобетонные фундаменты этих установок или опор отдельно стоящих молниеотводов либо выполнить искусственные заземлители, состоящие из одного вертикального или горизонтального электрода длиной не менее 5 м.

Для защиты зданий и сооружений от вторичных проявлений молний должны быть предусмотрены следующие мероприятия:

Металлические корпуса всего оборудования должны быть присоединены к защищаемому устройству электроустановок, либо к железобетонному фундаменту здания;

Внутри здания между трубопроводами и другими протяженными металлическими конструкциями в местах их взаимного сближения на расстоянии менее 10 см через каждые 30 м должны быть выполнены перемычки;

Во фланцевых соединениях трубопроводов внутри здания должна быть обеспечена нормальная затяжка – не менее 4 болтов на каждый фланец.

Для защиты наружных установок от вторичных проявлений молнии металлические корпуса аппаратов должны быть присоединены к заземляющему устройству электрооборудования или к заземлителю защиты от прямых ударов молнии.

Искусственные заземлители следует располагать под асфальтовым покрытием либо в редкопосещаемых местах (на газонах, в удалении на 5 м и более от грунтовых проезжих и пешеходных дорог и т. п.) При этом для отдельно стоящих молниеотводов искусственный заземлитель должен быть не менее 3 м, объединенных горизонтальным электродом, при расстоянии между вертикальными электродами не менее 5 м.

Проверка состояния устройств молниезащиты должна проводиться 1 раз в год перед началом грозового сезона.

Классификация зданий и сооружений по устройству молниезащиты

Классификация объектов определяется по опасности ударов молнии для самого объекта и его окружения.

Непосредственное опасное воздействие молнии - это пожары, механические повреждения, травмы людей и животных, а также повреждения электрического и электронного оборудования. Последствиями удара молнии могут быть взрывы и выделение опасных продуктов - радиоактивных и ядовитых химических веществ, а также бактерий и вирусов.

Удары молнии могут быть особо опасны для информационных систем, систем управления, контроля и электроснабжения. Для электронных устройств, установленных в объектах разного назначения, требуется специальная защита.

Рассматриваемые объекты могут подразделяться на обычные и специальные.

Обычные объекты - жилые и административные строения, а также здания и сооружения, высотой не более 60 м, предназначенные для торговли, промышленного производства, сельского хозяйства.

Специальные объекты:

1. объекты, представляющие опасность для непосредственного окружения;
2. объекты, представляющие опасность для социальной и физической окружающей среды (объекты, которые при поражении молнией могут вызвать вредные биологические, химические и радиоактивные выбросы);

3. прочие объекты, для которых может предусматриваться специальная молниезащита, например, строения высотой более 60 м, игровые площадки, временные сооружения, строящиеся объекты. В табл. 5 даны примеры разделения объектов на четыре класса.

Таблица 5

Примеры классификации объектов

Объект Тип объекта Последствия удара молнии
Обычный Жилой дом Отказ электроустановок, пожар и повреждение имущества. Обычно небольшое повреждение предметов, расположенных в месте удара молнии или задетых ее каналом
Ферма Первоначально - пожар и занос опасного напряжения, затем - потеря электропитания с риском гибели животных из-за отказа электронной системы управления вентиляцией, подачи корма и т. д.
Театр; школа; универмаг; спортивное сооружение Отказ электроснабжения (например, освещения), способный вызвать панику. Отказ системы пожарной сигнализации, вызывающий задержку противопожарных мероприятий
Банк; страховая компания; коммерческий офис Отказ электроснабжения (например, освещения), способный вызвать панику. Отказ системы пожарной сигнализации, вызывающий задержку противопожарных мероприятий. Потери средств связи, сбои компьютеров с потерей данных
Больница; детский сад; дом для престарелых Отказ электроснабжения (например, освещения), способный вызвать панику. Отказ системы пожарной сигнализации, вызывающий задержку противопожарных мероприятий. Потери средств связи, сбои компьютеров с потерей данных. Необходимость помощи тяжелобольным и неподвижным людям
Промышленные предприятия Дополнительные последствия, зависящие от условий производства - от незначительных повреждений до больших ущербов из-за потерь продукции
Музеи и археологические памятники Невосполнимая потеря культурных ценностей
Специальный с ограниченной опасностью Средства связи; электростанции; пожароопасные производства Недопустимое нарушение коммунального обслуживания (телекоммуникаций). Косвенная опасность пожара для соседних объектов
Специальный, представляющий опасность для непосредственного окружения Нефтеперерабатывающие предприятия; заправочные станции; производства петард и фейерверков Пожары и взрывы внутри объекта и в непосредственной близости
Специальный, опасный для экологии Химический завод; атомная электростанция; биохимические фабрики и лаборатории Пожар и нарушение работы оборудования с вредными последствиями для окружающей среды

При строительстве и реконструкции для каждого класса объектов требуется определить необходимые уровни надежности защиты от прямых ударов молнии (ПУМ). Например, для обычных объектов может быть предложено четыре уровня надежности защиты, указанные в табл. 6.

  • Глава 1 управление безопасностью жизнедеятельности. Правовые и организационные основы
  • Предмет и содержание курса «Безопасность жизнедеятельности»
  • 1.2. Научный метод курса бжд и связь с другими науками
  • 1.3. Технический прогресс и новые проблемы безопасности жизнедеятельности. Проблемы технотронной цивилизации
  • 1.4. Роль безопасности труда в повышении производительности труда и влияние его на экономические показатели производства
  • 1.5. Экономические последствия и материальные затраты на охрану окружающей среды
  • 1.6. Правовые и нормативно-технические основы безопасности жизнедеятельности
  • 1.7. Организационные основы управления безопасностью жизнедеятельности
  • Государственный и общественный надзор по охране труда
  • 1.9. Планирование и финансирование мероприятий по безопасности жизнедеятельности
  • 1.10. Международное сотрудничество в области безопасности жизнедеятельности
  • Глава 2 основы физиологии труда и комфортные условия жизнедеятельности
  • 2.1. Факторы, определяющие условия обитания человека
  • Классификация основных форм человеческой деятельности
  • 2.3. Категорирование условий труда и работ
  • Показатели условий труда по трудовой нагрузке
  • Показатели условий труда по опасности
  • Показатели условий труда по вредности
  • 2.4. Обеспечение комфортных условий труда: микроклимат помещения
  • 2.5. Освещение производственных помещений. Искусственное и естественное освещение
  • Глава 3 производственный травматизм и профзаболевания
  • Производственный травматизм и профзаболевания: причины и способы снижения
  • 3.2. Учет и расследование несчастных случаев на производстве
  • 3.3. Размер вреда, подлежащего возмещению потерпевшему в результате трудового увечья
  • Глава 4 воздействие негативных факторов на человека и техносферу
  • 4.1. Вредные вещества и методы защиты
  • 4.2. Ионизирующие излучения
  • 4.3. Электромагнитные поля
  • 4.4. Электрический ток
  • 4.5. Защита от статического и атмосферного электричества
  • 4.6. Производственный шум
  • 4.7. Производственные вибрации
  • Глава 5 пожаровзрывобезопасность на производстве
  • Пожарная безопасность производств: физика и химия горения, классификация процессов горения, теории горения, показатели горючести веществ
  • Категорирование помещений и зданий по взрывопожарной и пожарной опасности
  • Категорирование пожаровзрывоопасности производственных помещений
  • 5.3. Классификация взрыво- и пожароопасных зон
  • Классификация пожароопасных зон
  • Классификация взрывоопасных зон
  • 5.4. Категории наружных установок по пожарной опасности
  • Категории наружных установок по пожарной опасности
  • 5.5. Выбор взрыво- и пожарозащищенного электрооборудования
  • Категории взрывоопасных смесей газов и паров с воздухом (гост 12.1.011-78 (1991))
  • Группы взрывоопасных смесей газов и паров с воздухом по температуре самовоспламенения
  • Уровни взрывозащиты электрооборудования
  • Выбор температурных классов электрооборудования
  • 5.6. Категорирование блоков по взрывоопасности
  • Категорирование технологических блоков
  • 5.7. Принцип выбора средств тушения пожаров. Автоматические средства тушения пожаров
  • 5.8. Способы оповещения о пожаре: извещатели и сигнализация
  • Глава 6 безопасность технологических процессов
  • 6.1. Безопасность технологических процессов: этапы создания технологических процессов, потенциальные опасности, требования и направления безопасности
  • 6.2. Технологический регламент и его содержание
  • 6.3. Роль автоматизации для обеспечения безопасности
  • 6.4. План локализации (ликвидации) аварийных ситуаций
  • Раздел 1. «Технология и аппаратурное оформление блока»;
  • 6.6. Сосуды, работающие под давлением
  • Группы сосудов, работающих под давлением
  • 6.7. Инженерно-технические средства защиты. Защитные устройства
  • 6.8. Индивидуальные средства защиты
  • Глава 7 организация экологического контроля, надзора и управления в российской федерации
  • Экологичность технологических процессов
  • Создание безотходных технологических процессов
  • 7.3. Экологический паспорт предприятия
  • 7.4. Экологическая экспертиза и контроль экологичности и безопасности предприятия
  • Глава 8 чрезвычайные ситуации
  • 8.1. Классификация чрезвычайных ситуаций
  • 8.2. Природные чрезвычайные ситуации
  • Инфекционные заболевания людей
  • 8.3. Чрезвычайные ситуации техногенного характера
  • 8.4. Чрезвычайные ситуации химического характера
  • 8.5. Чрезвычайные ситуации военного времени. Современные средства поражения
  • 8.6. Ядерное оружие: общая характеристика, поражающее действие
  • 8.7.Химическое оружие: общая характеристика, поражающее действие
  • Бактериологическое оружие: общая характеристика, поражающее действие
  • 8.9. Перспективные виды оружия массового поражения
  • Организация защиты населения и территории в чрезвычайных ситуациях. План мероприятий для предупреждения и ликвидации чрезвычайных ситуаций
  • Обеспечение устойчивости объектов при чрезвычайных ситуациях
  • Психологическая подготовка населения к чрезвычайным и экстремальным ситуациям
  • Организация оказания медицинской помощи при чрезвычайных ситуациях
  • Основные типы приборов для контроля требования безопасности жизнедеятельности
  • Законодательные и нормативно-правовые документы
  • 2.1. Общие вопросы охраны природы
  • 2.2. Трудовое законодательство
  • 2.3. Общепринятые государственные стандарты
  • 2.4. Санитарные и строительные нормы и правила
  • Рекомендуемая литература
  • 4.5. Защита от статического и атмосферного электричества

    Статическое электричество образуется в результате трения (соприкосновения или разделения) двух диэлектриков друг о друга или диэлектриков о металлы. На диэлектриках электрические заряды удерживаются продолжительное время, вследствие чего они получили название статического электричества.

    Явление статической электризации наблюдается в следующих случаях:

      в потоке и при разбрызгивании жидкости;

      в струе газа или пара;

      при соприкосновении и последующем удалении двух твердых разнородных тел (контактная электризация).

    Электризация тела человека происходит при работе с наэлектризованными изделиями и материалами. Количество накопившегося на людях электричества может быть вполне достаточным для искрового разряда при контакте с заземленным предметом. Считается, что энергия разряда с тела человека достаточна для зажигания практически всех газо-, паровоздушных и некоторых пылевоздушных горючих смесей.

    Действие статического электричества смертельной опасности для человека не представляет. Искровой разряд статического электричества человек ощущает как укол или судорогу. При внезапном уколе может возникнуть испуг и вследствие рефлекторных движений человек может непроизвольно сделать движения, приводящие к падению с высоты, попаданию в опасную зону машин и др.

    Длительное воздействие статического электричества неблагоприятно отражается на здоровье работающего, отрицательно сказывается на его психофизическом состоянии.

    Допустимые уровни напряженности электростатических полей установлены ГОСТ 12.1.045-88 «Электрические поля. Допустимые уровни на рабочих местах и требования к проведению контроля» и Санитарно-гигиеническими нормами допустимой напряженности электростатического поля (№ 1757-77).

    Допустимые уровни напряженности электростатических полей устанавливаются в зависимости от времени пребывания на рабочих местах. Предельно допустимый уровень напряженности электростатических полей устанавливается равным 60 кВ/м в течение 1 часа.

    Защите от статического электричества подлежат все промышленные, опытно-промышленные и лабораторные установки, в которых применяются или получаются вещества, способные при перемещении или переработке подвергаться электризации, с образованием опасных потенциалов (вещества и материалы с удельным объемным сопротивлением выше 10 Ом∙м), а также взрыво- и пожароопасные производства, отнесенные по классификации «Правил устройства электроустановок» к классам В-I, В-Iа, В-Iб, В-Iг, В-II, В-IIа. В помещениях и зонах, которые не относятся к указанным классам, защита должна осуществляться лишь на тех участках, где статическое электричество отрицательно влияет на технологический процесс и качество продукции.

    Меры защиты от статического электричества:

      предотвращение накопления зарядов на электропроводящих частях оборудования, что достигается заземлением оборудования и коммуникаций;

      уменьшение удельных обычных и поверхностных электрических сопротивлений (увлажнение воздуха от 65% до 67%, если это допустимо по условиям технологического процесса; химическая обработка поверхности электропроводными покрытиями; нанесение на поверхность антистатических веществ; добавление антистатических присадок в горючие диэлектрические жидкости);

      снижение интенсивности зарядов статического электричества (достигается подбором скорости движения веществ, исключением разбрызгивания, дробления и распыления веществ, отводом электростатического заряда, подбором поверхностей трения);

      отвод статического электричества, накапливающегося на людях;

      устройство электропроводящих полов или заземленных зон, помостов и рабочих площадок, заземление ручек дверей, поручней лестниц, рукояток приборов, машин и аппаратов;

      обеспечение работающих токопроводящей обувью, антистатическими халатами.

    Мероприятия по защите от прямых ударов молнии

    Молния – сильный искровой разряд между двумя облаками или между облаком и землей.

    Виды ударов молнии:

      прямые удары молнии на объект;

      за счет распределения потенциалов (может поражаться соседний объект);

      за счет индуктивного эффекта (может поражаться третий объект, например, через почву).

    Вероятность поражения объекта молнией:

    где А, В – длина и ширина здания, h– высота здания,n– коэффициент, учитывающий сколько раз может ударять молния в зависимости от климатического пояса.

    Нижнекамск находится в IIIклиматическом поясе. 40 - 60 раз может ударить молния летом,n= 6.

    Защита от прямых ударов молний зданий и сооружений с неметаллической кровлей должна быть выполнена отдельно стоящими или установленными на защищающем объекте стержневыми или тросовыми молниеотводами. При установке молниеотводов на объекте от каждого стержневого молниеприемника или каждой стойки тросового молниеприемника должно быть обеспечено не менее двух токоотводов. При уклоне кровли не более 1/8 может быть использована также молниеприемная сетка из стальной проволоки диаметром не менее 6 мм, прокладываемой в кровле здания. На зданиях и сооружениях с металлической кровлей в качестве молниеприемника должна использоваться сама кровля. При этом все выступающие неметаллические элементы должны быть оборудованы молниеприемниками.

    Наружное установки, содержащие горячие сжиженные газы и легковоспламеняющиеся жидкости, должны быть защищены от прямых ударов молнии следующим образом:

      корпуса установок из железобетона, металлические корпуса установок при толщине металла крыши менее 4 мм должны быть оборудованы молниеотводами, установленными на защищаемом объекте или отдельно стоящими молниеотводами;

      металлические корпуса установок и отдельно стоящих резервуаров при толщине крыши 4 мм и более, а также отдельные резервуары объемом менее 200 м 3 независимо от толщины металла крыши, а также металлические кожуха теплоизолированных установок достаточно присоединить к заземлителю;

      для резервуарных парков, содержащих сжиженные газы общим объемом более 8000 м 3 , а также для резервуарных парков с корпусами из металла и железобетона, содержащих горячие и лекговоспламеняющиеся жидкости, при общем объеме группы резервуаров более 100 тыс. м 3 защиту от прямых ударов молнии следует, как правило, выполнять отдельно стоящими молниеотводами;

      для наружных установок в качестве заземлителей защиты от прямых ударов молнии следует использовать железобетонные фундаменты этих установок или опор отдельно стоящих молниеотводов либо выполнить искусственные заземлители, состоящие из одного вертикального или горизонтального электрода длиной не менее 5 м.

    Для защиты зданий и сооружений от вторичных проявлений молний должны быть предусмотрены следующие мероприятия:

      металлические корпуса всего оборудования должны быть присоединены к защищаемому устройству электроустановок, либо к железобетонному фундаменту здания;

      внутри здания между трубопроводами и другими протяженными металлическими конструкциями в местах их взаимного сближения на расстоянии менее 10 см через каждые 30 м должны быть выполнены перемычки;

      во фланцевых соединениях трубопроводов внутри здания должна быть обеспечена нормальная затяжка – не менее 4 болтов на каждый фланец.

    Для защиты наружных установок от вторичных проявлений молнии металлические корпуса аппаратов должны быть присоединены к заземляющему устройству электрооборудования или к заземлителю защиты от прямых ударов молнии.

    Искусственные заземлители следует располагать под асфальтовым покрытием либо в редкопосещаемых местах (на газонах, в удалении на 5 м и более от грунтовых проезжих и пешеходных дорог и т. п.) При этом для отдельно стоящих молниеотводов искусственный заземлитель должен быть не менее 3 м, объединенных горизонтальным электродом, при расстоянии между вертикальными электродами не менее 5 м.

    Проверка состояния устройств молниезащиты должна проводиться 1 раз в год перед началом грозового сезона.

    "


    Включайся в дискуссию
    Читайте также
    Обязательный аудит: критерии проведения Обязательный аудит критерии малое предприятие
    Составление смет на проектные и изыскательские работы
    Транспортный налог в московской области Ставка по транспортному налогу в году