Подпишись и читай
самые интересные
статьи первым!

Прогнозирование и оценка пожарной обстановки. Прогноз развития пожара. Защита от ЧС

В результате изучения объекта в оперативно-тактическом отношении в зависимости от степени пожарной опасности технологического процесса производства, величины пожарной нагрузки, концентрации материальных ценностей и конструктивных особенностей здания, устанавливается место возникновения пожара в наиболее сложный по обстановке вариант возможного пожара. На такие объекты, как нефтебазы, театры, нефтеперерабатывающие заводы, электростанции, производственные здания с пожаровзрывоопасной технологией разрабатывается несколько вариантов возможного пожара, каждый из которых может иметь свои особенности. Так, для нефтебазы рассматривается вариант пожара в резервуаре, тушение которого потребует наибольшее количество сил и средств. Одновременно рассматривается усложненный вариант тушения пожара, когда горят все резервуары, расположенные в одном обваловании. Для театра рассматриваются варианты пожара на сцене и в зрительном зале.

После того как будет определено место возникновения пожара, производится оценка обстановки к моменту введения сил и средств первым прибывшим пожарным подразделением. Одной из основных величин, характеризующих обстановку на пожаре, является его площадь на данный момент времени, которая определяется расчетом.

В отдельных случаях при разработке планов пожаротушения площадь пожара расчетом не определяется, а принимается равной площади помещения. Так, при пожаре на сцене театра при опущенном противопожарном занавесе за максимальную площадь пожара принимается площадь сцены; при пожаре на лесоскладе - площадь квартала, при пожарах в наземных резервуарах о ЛВЖ и ГЖ - площадь зеркала горящего резервуара или площадь зеркала горящих резервуаров, находящихся в одном обваловании; при пожарах в кабельных помещениях электростанций и металлургических заводов (кабельные шахты, полуэтажи, подвалы) - помещения наибольшего объема, а в кабельных туннелях - объем двух смежных отсеков.

Исходными данными для определения площади пожара являются: время свободного развития пожара τ св, мин; линейная скорость распространения горения V л, м/мин и форма развития пожара.



Время свободного развития пожара

где τ д.с. - время с момента возникновения пожара до сообщения о нем в пожарную часть (принимается в дневное время 5-8, в ночное 8-12 мин); τ сл - время следования первого пожарного подразделения к месту вызова, мин; τ б.р. - время боевого развертывания первого пожарного подразделения (принимается в соответствии с нормативами по пожарно-строевой подготовке в зависимости от расстояния до водоисточников), мин.

Линейная скорость распространения горения принимается по справочникам. Так как в процессе развития пожара V л не является постоянной, то в первые 10 мин она условно принимается равной 0,5V л табл. , а после 10 мин свободного горения и до подачи стволов V л = V л табл. .

При распространении пожара после введения стволов на его тушение V л принимается условно равной 0,5V л табл. . Если после 10 мин горение распространилось через проем в соседнее помещение, то скорость распространения горения в нем принимается равной V л табл. . Такой же принимают скорость, если распространение горения в соседние помещения происходит в результате прогорания перегородки или закрытой двери. При этом время прогорания перегородки или закрытой двери учитывается как время развития пожара.

Следует иметь в виду, что если на пути движения огня имеются разрывы в пожарной нагрузке, которые перекрываются факелом пламени, то они в учет не принимаются. Однако в этом случае значение V л следует принимать минимальным. Кроме того, на скорость распространения горения влияет наличие направленных газовых потоков. Если место возникновения пожара удалено от проемов, через которые происходит газообмен, то скорость распространения горения в сторону проемов следует принимать в 1,5-2 раза большей, чем в противоположную.

Во всех остальных случаях при пожарах в ограждениях при равномерно распределенной пожарной нагрузке и отсутствии газовых потоков фронт пламени по всем направлениям распространяется с одинаковой скоростью. При пожарах на открытом пространстве максимальное значение скорости распространения горения следует принимать по направлению ветра.

При горении волокнистых материалов в разрыхленном состоянии, пыли и жидкостей значение V л принимается равным табличному с момента возникновения горения. При горении растекающейся жидкости скорость распространения горения принимается равной скорости растекания жидкости.

Для определения площади пожара при горении твердых горючих материалов находят расстояние, на которое переместится фронт пламени от первоначального места его возникновения за время свободного развития. На основании этого уточняют форму площади пожара. Расстояние, пройденное фронтом пламени

При τ св ≤ 10 мин

При τ св > 10 мин

L=5V л +V л τ 2

(до момента введения первого ствола), где 5V л = 0,5V л ×10 мин; τ 2 = τ св - 10

При развитии пожара после введения стволов до локализации пожара

L=5V л + V л τ 2 +0,5V л τ 3

где τ 3 = τ общ - (10 - τ 2)

Величину L, найденную с учетом линейной скорости распространения горения на всех направлениях, отложить в масштабе от принятого очага пожара, который обозначается красным флажком на плане помещения, и, таким образом, определить границы площади пожара и его геометрическую форму.

Если на пути распространения фронта пламени нет никаких преград, то площадь пожара будет иметь круговую форму. Если фронт пламени будет ограничен с одной стороны стеной или иной преградой, то площадь пожара будет иметь форму полукруга. При ограничении фронта пламени с двух сторон площадь пожара, в зависимости от места его возникновения, принимает угловую или прямоугольную форму. Если ширина здания не превышает 10 м, то к моменту введения стволов первый прибывшим пожарным подразделением пожар, независимо от места его возникновения, как правило, принимает прямоугольную форму.

Площадь пожара:

а) при круговом развитии и времени распространения горения до 10 мин включительно

при τ св > 10 мин

При развитии пожара после введения ствола до локализации пожара

б) при угловом распространении горения (α = 90°) и в форме полукруга указанные формулы соответственно имеют вид:

для углового развития при τ св ≤ 10 мин

при τ св > 10 мин

,

для полукруга при τ св ≤ 10 мин

,

при τ св > 10 мин

в) при прямоугольной форме развития пожара:

при τ св ≤ 10 мин

;

при τ св > 10 мин

при распространении пожара после введения стволов до локализации

где а - ширина фронта пламени (ширина помещения); n - число направлений развития пожара; S п - площадь пожара, м 2 .

По найденной площади пожара определяется возможность локализации его первым прибывшим пожарным подразделением. Для этого следует проверить, выполняется ли условие локализации:

где Q ф, Q тр - соответственно фактический и требуемый расходы огнетушащего вещества, л/с.

Требуемый расход огнетушащего вещества для тушения пожара:

где J тр - требуемая интенсивность подачи огнетушащего вещества, л/(с×м 2).

Фактический расход определяется, исходя из тактических возможностей отделений по подаче огнетушащих веществ на тушение с учетом численности боевых расчетов и проведения других работ (разведка пожара, спасание людей и т.д.).

Для первого прибывшего подразделения (при условия подачи в качестве огнетушащего вещества воды или растворов) принято, что отделение на автонасосе и автоцистерне может обеспечить подачу стволов с общим расходом 14 л/с (два ствола А или два ГПС); при работе в изолирующих противогазах - одного ствола А или Б.

Если подразделение не может подать огнетушащее вещество на всю площадь пожара, то проверяется возможность локализации его по площади тушения с учетом возможных направлений ввода стволов через оконные, дверные и иные проемы. В этом случае

где S т - площадь тушения, м 2 .

Площадь тушения:

при тушении по фронту

при тушении по периметру:

а)при прямоугольной форме развития пожара

S т = 2h(a+b-2h)

при круговой форме развития пожара

где h - глубина тушения (для ручных стволов h = 5 м, для лафетных - 10м); а - ширина площади пожара, м; b - длина площади пожара, м; R - радиус пожара при круговой форме его развития, м.

Далее необходимо сравнить требуемый расход огнетушащего вещества с фактическим и сделать вывод: сможет ли первое прибывшее подразделение подать требуемый расход огнетушащих веществ на тушение и одновременно выполнить другие необходимые работы, обеспечивающие успешное тушение пожара и опасение людей, т.е. сможет ли локализовать пожар или нет. Если первое прибывшее пожарное подразделение локализовать пожар не сможет, то необходимо привлечь силы и средства по повышенному номеру вызова.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Министерство Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий.

САНКТ-ПЕТЕРБУРГСКИЙ ИНСТИТУТ ГОСУДАРСТВЕННОЙ ПРОТИВОПОЖАРНОЙ СЛУЖБЫ

Кафедра организации пожаротушения и проведения аварийно - спасательных работ

по пожарной тактике для курсантов второго курса на тему № 1.1:

«Основы прогнозирования развития пожаров и связанных с ними ЧС»

Санкт - Петербург 2005г.

Лекция по пожарной тактике для курсантов второго курса

Тема № 1.1: «Основы прогнозирования развития пожаров и связанных с ними ЧС»

Время: 160 минут

Место: лекционный зал

Материально-техническое обеспечение:

1. графопроектор

План лекции:

Введение…………………………………………………………....10 мин.

1. Классификация пожаров……………………………………35 мин.

2. Зоны пожаров………………………………………………...30 мин.

3. Газовый обмен на пожаре………………………………….50 мин.

3.1. Газовый обмен при наружных пожарах.

3.2. Газовый обмен при внутренних пожарах.

4. Параметры пожара…………………………………………..35 мин.

4.1. Продолжительность пожара.

4.2. Площадь, периметр и фронт пожара.

4.3. Средние параметры скоростей развития пожара.

4.4. Определение параметров пожара.

Литература:

1. Бессмертнов В.Ф., Вязигин В.Г., Малыгин И.Г. “Пожарная тактика в вопросах и ответах”: Учебное пособие. СПб.: Санкт-Петербургский институт ГПС МЧС России, 2003.

2. Повзик Я.С. Пожарная тактика. М.: Спецтехника, 2001.

3. Абдурагимов И.М. и др. Процессы горения. М.: ВИПТШ МВД СССР, 1984.

Введение

Успех тушения пожаров достигается комплексом служебных и оперативно-тактических действий. Среди них особое значение имеют: умение анализировать явления, происходящие на пожаре, факторы, способствующие и препятствующие развитию горения, а также тушению пожара; оценивать эти факторы, производить расчет сил и средств для тушения пожаров и принимать наиболее рациональные решения на ведение боевых действий подразделениями пожарной охраны.

Для оценки реальной и прогнозирования возможной обстановки на пожаре, разработки мероприятий по тушению пожара и управлению боевыми действиями подразделений необходимо знать: закономерности развития пожара, его параметры, без которых невозможно определить вид огнетушащих веществ, способы их подачи, количество сил и средств, их расстановку.

Не случайно, в квалификационных требованиях, предъявляемых к основным категориям начальствующего состава пожарной охраны, наряду с другими требованиями записано: Сотрудник Государственной противопожарной службы России должен:

опасные факторы пожара и последствия их воздействия на людей, приемы и способы прекращения горения;

основные тактико-технические характеристики и тактические возможности подчиненных и взаимодействующих сил и средств.

выполнять обязанности руководителя тушения пожара;

разрабатывать оперативно-служебную документацию по вопросам пожаротушения в городах и населенных пунктах.

Поэтому изучение основ пожарной тактики имеет большое значение для подготовки специалиста к выполнению должностных обязанностей на практике.

пожар горение задымление

1. Классификация пожаров

Понятие пожара дается в статье 1 Закона Российской Федерации "О пожарной безопасности". Пожар - неконтролируемое горение, причиняющее материальный ущерб, вред жизни и здоровью граждан, интересам общества и государства.

Вместе с тем, пожар представляет собой сложный физико-химический процесс, включающий помимо горения явления массо- и теплообмена, развивающиеся во времени и пространстве.

Эти явления взаимосвязаны и характеризуются параметрами пожара: скоростью выгорания, температурой горения и т.д. Значения этих параметров позволяют определить характеристику пожара, необходимую для оценки обстановки на пожаре и принятия решения на ведение боевых действий по его тушению.

Распределение пожаров на группы и виды по сходствам или различиям называется классификацией.

Классификация - искусственная, если она объединяет пожары по внешним (случайным) признакам, и естественная, если она группирует пожары на основе их объективной внутренней связи и общих признаков развития. Естественная классификация пожаров считается научной, она позволяет предопределить закономерность тактики тушения различных видов пожара.

Пожары могут классифицироваться по различным признакам. Основное требование пожарной тактики к классификации пожаров состоит в том, чтобы те или иные группы, классы, виды и разновидности пожаров прежде всего предопределяли способы и приемы прекращения горения, применяемые огнетушащие вещества, направление и последовательность действий подразделений, распределения сил и средств и т.д.

Признаки, по которым классифицируют пожары, делятся на общие и частные.

Общая классификация пожаров приведена на рисунке 1.

ГРУППЫ ПОЖАРОВ

КЛАССЫ ПОЖАРОВ

ВИДЫ ПОЖАРОВ

РАЗНОВИДНОСТИ ПОЖАРОВ

Рис.1. Классификация пожаров.

К общим относятся признаки, по которым классифицируются все пожары. Например, условия газообмена, физико-химические свойства горящих веществ и материалов, возможность распространения горения, продолжительность пожаров, расположение пожаров относительно поверхности земли и т. п. К частным относятся признаки, по которым классифицируются пожары, относящиеся только к отдельному классу, группе, виду и т. п. Например, вид распространяющихся пожаров классифицируется по скорости распространения горения, по форме площади пожара, по виду теплообмена и т.п. класс пожаров горючих жидкостей классифицируется по состоянию, по форме факела и другим признакам.

Общим явлением для всех пожаров является газообмен, который определяет качественную и количественную стороны всех параметров пожаров во времени и пространстве. На пожарах в зданиях и сооружениях газообмен можно регулировать по времени и направлению, а также использовать для прекращения горения путем изоляции помещений, в которых происходит пожар. При пожарах на открытом пространстве газообмен не регулируется.

По условиям газообмена все пожары можно разделить на две группы:

на открытом пространстве;

в ограждениях.

Другим общим признаком пожаров является агрегатное состояние горючих веществ и материалов, которое определяет огнетушащие средства, способы и приемы прекращения горения, подготовительные и обеспечивающие боевые действия подразделений.

В зависимости от вида горящих веществ и материалов пожары разделяются на классы А, В, С, D и подклассы А1, А2, В1, В2, D1, D2, D3 .

К пожарам класса А относится горение твердых веществ. При этом если горят тлеющие вещества, то пожары относятся к подклассу А1, а если неспособные тлеть - к подклассу А2.

К классу В относятся пожары легковоспламеняющихся и горючих жидкостей. При этом они будут относиться к подклассу В1, если жидкости не растворимы в воде и к подклассу В2 - растворимые в воде.

К классу С относятся пожары, при которых происходит горение газов.

К классу D относятся пожары, при которых происходит горение металлов. При этом они относятся к подклассу D1, если горят легкие металлы и их сплавы, к подклассу D2 - щелочные и подобные им металлы, к подклассу D3 - металлосодержащие соединения (металлоорганические или гидриды).

В зависимости от обстановки на пожаре, площадь и объем его могут быть постоянными или увеличиваться в результате перемещения фронта горения по поверхности веществ и материалов. Эти характерные особенности пожаров ведут к принципиальному различию в тактике их тушения. Поэтому все пожары по признаку распространения горения делятся на два вида:

распространяющиеся;

нераспространяющиеся.

Под распространяющимися пожарами понимают такие пожары, у которых происходит увеличение геометрических размеров (длины, высоты, ширины, радиуса) во времени.

Под нераспространяющимися пожарами понимают такие пожары, у которых геометрические размеры остаются неизменными во времени.

Следует отметить, что с течением времени свободного развития пожаров или в результате действия подразделений по ограничению распространения горения указанные два вида пожаров могут видоизменяться, т.е. переходить из одного вида в другой. Поэтому классификация пожаров по признаку распространения горения тесно связана с временем их развития. Обычно пожары классифицируются по этому признаку на определенное время действия подразделений: например, на время прибытия первого подразделения и введения им сил и средств, прибытия дополнительных сил и средств, прибытия службы пожаротушения и т.д.

Как распространяющиеся, так и нераспространяющиеся пожары могут возникать и развиваться на различных объектах. Поэтому все пожары по принадлежности их к объектам подразделяются на следующие:

пожары на гражданских объектах;

пожары на промышленных объектах;

пожары в лесном фонде;

пожары на сельскохозяйственных объектах;

пожары на объектах транспорта.

По размерам пожары могут быть

средними

крупными.

Следует отметить, что размер может определяться по различным признакам:

по величине ущерба;

по размерам (площади или объему, дебиту фонтана) пожара;

по количеству требуемых для тушения сил и средств;

по сложности управления боевыми действиями подразделений пожарной охраны.

Классификация пожаров по размерам является условной и производится на основании признаков и различий, принятых в нормативных документах.

По продолжительности пожары подразделяются на:

кратковременные (малопродолжительные)

средней продолжительности (среднепродолжительные)

затяжные (продолжительные)

Классификация пожаров по продолжительности, так же, как и по размерам, производится на основании условно принимаемых различий.

По отношению к поверхности земли пожары могут располагаться на различных уровнях. По данному признаку пожары подразделяются на следующие:

подземные;

наземные;

средневысотные;

высотные.

Подземными пожарами называются пожары, расположенные ниже уровня земли, на любой глубине.

Под наземными пожарами понимают такие пожары, которые находятся на высоте, достигаемой при помощи ручных пожарных лестниц.

Под средневысотными пожарами понимают пожары, расположенные выше уровня поверхности земли, то есть до высоты, которая достигается при использовании пожарных автолестниц и подъемников.

Высотными пожарами называются пожары, расположенные выше 30 метров от уровня поверхности земли.

Наиболее сложными являются пожары одновременно наружные и внутренние, открытые и скрытые. Однако какой-то вид из совокупности этих пожаров в определенный момент является основными и характеризующим обстановку в целом.

С изменением обстановки изменяется и вид пожара. Так, при развитии пожара в здании скрытое внутреннее горение может перейти в открытое внутреннее, а внутреннее - в наружное и наоборот.

2. Зоны пожара

Пространство, в котором развивается пожар, можно условно разделить на три зоны:

зону горения;

зону теплового воздействия;

зону задымления.

Зона горения - та часть пространства, в которой протекают процессы термического разложения или испарения горючих веществ и материалов (твердых, жидких, газов, паров) и сгорания образовавшихся продуктов. Данная зона ограничивается размером языка пламени, но в некоторых случаях может ограничиваться ограждениями здания (сооружения) стенками технологических установок, аппаратов.

Горение может быть пламенным (гомогенным) и беспламенным (гетерогенным). При пламенном горении границами зоны горения являются поверхность горящего материала и тонкий светящийся слой пламени (зона реакции окисления). При беспламенном горении (войлок, торф, кокс) зона горения представляет собой горящий объем твердых веществ, ограниченный не горящим веществом.

1- зона горения;

2 2 2- зона теплового воздействия;

3- зона задымления;

4- горючее вещество.

Рис. 2. Зоны пожара.

Зона горения характеризуется геометрическими и физическими параметрами: площадью, объемом, высотой, горючей загрузкой, скоростью выгорания веществ (линейная, массовая, объемная) и др.

Тепло, выделяющееся при горении, является основной причиной развития пожара. Оно вызывает нагрев окружающих зону горения горючих и негорючих веществ и материалов. Горючие материалы подготавливаются к горению и затем воспламеняются, а негорючие материалы разлагаются, плавятся, строительные конструкции деформируются и теряют прочность.

Выделение тепла происходит не во всем объеме зоны горения, а только в светящемся ее слое, где происходит химическая реакция. Выделившееся тепло воспринимается продуктами горения (дымом), в результате чего они нагреваются до температуры горения.

Зона теплового воздействия - часть примыкающая к зоне горения. В этой части происходит процесс теплообмена между поверхностью пламени и окружающими строительными конструкциями, материалами. Передача тепла осуществляется конвекцией, излучением, теплопроводностью. Границы зоны проходят там, где тепловое воздействие приводит к заметному изменению состояния материалов, конструкций и создает невозможные условия для пребывания людей без средств тепловой защиты.

Проекция зоны теплового воздействия на поверхность земли или пола помещения называется площадью теплового воздействия. При пожарах в зданиях эта площадь состоит из двух участков: внутри здания и вне его. На внутреннем участке передача тепла осуществляется преимущественно конвекцией, а на внешнем - излучением от пламени в окнах и других проемах.

Размеры зоны теплового воздействия зависят от удельной теплоты пожара, размеров и температуры зоны горения и др.

Зона задымления - пространство, которое заполняется продуктами сгорания (дымовыми газами) в концентрациях, создающих угрозу для жизни и здоровья людей, затрудняющих действия пожарных подразделений при работе на пожарах.

Внешними границами зоны задымления считаются места, где плотность дыма составляет 0,0001 - 0,0006 кг/м 3 , видимость в пределах 6-12 м, концентрация кислорода в дыме не менее 16% и токсичность газов не представляет опасности для людей, находящихся без средств индивидуальной защиты органов дыхания.

Нужно всегда помнить, что задымление на любом пожаре всегда представляет наибольшую опасность для жизни людей. Так, например объемная доля оксида углерода в дыме в количестве 0,05% опасна для жизни людей.

В некоторых случаях дымовые газы содержат сернистый газ, синильную кислоту, оксиды азота, галогенводороды и др., наличие которых даже в незначительных концентрациях приводят к смертельным исходам.

В 1972 году в Ленинграде в ломбарде на Владимирском проспекте произошел пожар, к моменту прибытия караула в помещении практически не было задымления и личный состав проводил разведку без средств защиты органов дыхания, но через некоторое время личный состав стал терять сознание, в бессознательном состоянии было эвакуировано 6 пожарных, которые были госпитализированы.

В процессе расследования было установлено, что произошло отравление личного состава токсичными продуктами, выделявшимися в процессе горения нафталина.

Анализ пожаров показывает, что подавляющее большинство людей погибает от отравления продуктами неполного сгорания, вдыхания воздуха с пониженной концентрацией кислорода (менее 16%). При уменьшении объемной доли кислорода до 10 % человек теряет сознание, а при 6% у него появляются судороги, и если ему не оказать немедленную помощь, то через несколько минут наступает смерть.

При пожаре в гостинице "Россия" в Москве из 42 человек только 2 человека погибли в огне, остальные погибли от отравления продуктами сгорания.

В чем заключается коварство задымления помещений на пожаре, даже при незначительных размерах горения? Если человек находится непосредственно в зоне горения или теплового воздействия, то естественно он сразу ощущает приближающуюся опасность и принимает соответствующие меры для обеспечения своей безопасности. При проявлении задымления очень часто люди, находящиеся в помещениях (а это наиболее характерно для зданий повышенной этажности) в верхнерасположенных этажах, не придают этому серьезного значения, а между тем по лестничной клетке образуется, так называемая, дымовая пробка, которая препятствует выходу людей из верхней зоны. Попытки людей пробиться через дым без индивидуальных средств защиты органов дыхания, как правило, заканчиваются трагически.

Так в 1997 году в Санкт-Петербурге, при тушении пожара на 3 этаже жилого дома на лестничной площадке 7 этажа были обнаружены трое погибших жильцов 5 этажа, которые, как показало расследование, пытались спастись от задымления в своей квартире, у знакомых, проживавших на 8 этаже.

Практически установить границы зон при пожаре не представляется возможным, т.к. происходит их непрерывное изменение, и можно говорить лишь об условном их расположении.

В процессе развития пожара различают три стадии: начальную, основную (развитую) и конечную. Эти стадии существуют для всех пожаров не зависимо от их видов.

Начальной стадии соответствует развитие пожара от источника зажигания до момента, когда помещение будет полностью охвачено пламенем. На этой стадии происходит нарастание температуры в помещении и снижение плотности газов в нем. Эта стадия продолжается 5 - 40 мин, а иногда и несколько часов. Она не оказывает, как правило, влияния на огнестойкость строительных конструкций, поскольку температуры пока сравнительно невелики. Количество удаляемых газов через проемы больше, чем количество поступающего воздуха. Вот почему линейная скорость в закрытых помещениях принимается с коэффициентом 0,5.

Основной стадии развития пожара в помещении соответствует повышение среднеобъемной температуры до максимума. На этой стадии сгорает 80-90% объемной массы горючих веществ и материалов. При этом расход удаляемых газов из помещения приблизительно равен притоку поступающего воздуха и продуктов пиролиза.

На конечной стадии пожара завершается процесс горения и постепенно снижается температура. Количество уходящих газов становится меньше, чем количество поступающего воздуха и продуктов горения.

3. Газовый обмен на пожаре

Газовый обмен на пожаре - это движение газообразных масс, вызываемых движением нагретых газообразных продуктов сгорания (теплового разложения) от зоны горения и атмосферного воздуха к зоне горения.

Основными и существенными параметрами, определяющими газовый обмен на пожаре, являются:

скорость движения воздуха или продуктов сгорания - скорость газообмена;

интенсивность газового обмена;

коэффициент избытка воздуха.

Управление газовыми потоками при тушении пожара является важным оперативно-тактическим действием, выполняемым с целью создания условий, способствующих успешному тушению пожара и проведению спасательных работ.

Нагретые продукты горения в зоне реакции из-за меньшей плотности по сравнению с плотностью поступающего в помещение воздуха поднимаются вверх, создавая избыточное давление. В нижней части помещения из-за снижения парциального давления кислорода в воздухе, участвующего в реакции окисления, создается разряжение. Высота в помещении, на которой давление в его объеме равно наружному или давлению в соседнем с горящим помещением, называется уровнем равных давлений. Нетрудно предположить, что выше этого уровня помещение заполнено дымом, ниже - концентрация продуктов горения не препятствует нахождению личного состава пожарных подразделений без средств защиты органов дыхания. Если на уровне равных давлений в помещении провести условную плоскость, то ее можно назвать плоскостью равных давлений.

При пожаре в помещении наступает момент, когда плоскость равных давлений опускается ниже высоты проема, при этом часть проема работавшего только на приток к зоне горения свежего воздуха, начинает работать и на выпуск продуктов горения, снижая тем самым интенсивность поступления свежего воздуха к зоне горения.

Чем ниже располагается плоскость равных давлений, тем больший объем занимает зона задымления, возникает опасность распространения продуктов горения в смежные с горящим помещения, возникновение в них очагов пожаров за счет теплосодержания газовой смеси.

Опускание плоскости равных давлений может произойти и от неправильного действия личного состава пожарных подразделений, администрации объекта. Например, нарушение соотношения площадей приточных и вытяжных проемов, которое может быть в процессе боевого развертывания и проникновения ствольщиков к зоне горения.

Чтобы успешно бороться с пожарами, личный состав пожарных подразделений должен знать способы управления газовыми потоками на пожаре.

Первый способ-управление аэрацией здания, т.е. усиление естественного воздухообмена в нем, что можно достичь изменением площадей приточных и вытяжных проемов, т.е. открывая или закрывая существующие в здании окна, двери, проделывания отверстия в ограждающих конструкциях, устанавливая перемычки.

Однако, следует иметь ввиду, что площади приточных и вытяжных проемов в помещении должны находиться в определенном соотношении. Установлено, что наилучшим соотношением является такое, при котором площадь вытяжных проемов превышает в 1,5 - 2 раза площадь приточных проемов.

Второй способ-применение принудительной вентиляции с использованием пожарных дымососов (вентиляторов), устанавливаемых как на нагнетание воздуха, так и на удаление продуктов сгорания.

Третий способ-применение личным составом пожарных подразделений соответствующих огнетушащих средств. Это воздушно-механическая пена средней или высокой кратности, распыленная вода и др.

3.1 Газовый обмен при наружных пожарах

При наружных пожарах схема газового обмена характерна наличием восходящего столба или движущейся колонной газообразных продуктов сгорания. Высота столба определяется перепадом давлений нагретых продуктов сгорания и атмосферного воздуха.

В зависимости от скорости ветра может увеличиваться скорость выгорания, а следовательно, и интенсивность газового обмена. Кроме того, скорость газообмена зависит от разности температур продуктов сгорания и окружающего атмосферного воздуха. Чем разность температур больше, тем больше разница между объемным весом газообразных продуктов сгорания и окружающего атмосферного воздуха. Разность объемных весов является основной движущей силой в образовании и скорости газового обмена. Ветер увеличивает скорость движения при газовом обмене, заполняя движущую силу разности объемных весов и внося коррективы в направление движения. На скорость движения газообразных масс при газовом обмене существенное влияние оказывает также атмосферное давление. Чем больше атмосферное давление, тем меньше скорость газообмена. При наружных пожарах скорость газообмена зависит и от выпадения атмосферных осадков.

Скорость газообмена обычно больше около зоны горения. Чем больше расстояние от зоны горения, тем меньше скорость горения и движения газов.

Изменить схему газообмена при наружном пожаре без его тушения нельзя. Скорость газообмена при наружных пожарах всегда больше, чем при внутренних.

3.2 Газовый обмен при внутренних пожарах

При внутренних пожарах газовый обмен зависит от вентиляции помещения, высоты помещения, горючей загрузки, архитектурно-планировочного решения здания.

Внутри горящего помещения создаются три зоны с различными давлениями:

· верхняя зона - с давлением газообразных продуктов сгорания выше атмосферного;

· нижняя зона - с давлением воздуха ниже атмосферного;

· нейтральная зона - с давлением равным атмосферному.

Чем ниже расположена нейтральная зона, тем больше зона задымления (верхняя) и концентрация дыма, а также больше возможностей для задымления соседних помещений.

На газовый обмен влияет не только открытие наружных проемов, но и их расположение, назначение, площадь, отношение площади пола к площади горения в горящем помещении.

По расположению проемы бывают нижние и верхние, однорядные и двухрядные, по назначению - приточные, вытяжные и приточно-вытяжные.

Рис. 3. Расположение нейтральной зоны при газообмене через проемы расположенные на разной высоте.

Высота расположения нейтральной зоны в горящем помещении при газообмене через проемы расположенные на разной высоте определяется по формуле:

где: H Н.З. - высота расположения нейтральной зоны, м;

H ПР - высота наибольшего приточного проема, м;

h 1 - расстояние от оси приточного проема до нейтральной зоны, м.

H - расстояние между центрами приточных и вытяжных проемов, м;

S 1 , S 2 - соответственно площади приточного и вытяжного проемов, м 2 ;

с в, с пг - плотность соответственно атмосферного воздуха и газообразных

продуктов горения, кг/м 3 (табл. 1.4., с.22, Справочник РТП, 1987г.).

Из этого уравнения можно сделать следующий вывод:

1. Чем больше расстояние между центрами приточных и вытяжных проемов (H), тем выше расположена нейтральная зона.

2. Нейтральная зона будет расположена ближе к тем проемам, площадь которых больше.

3. При равенстве площадей проемов и большой разнице плотности воздуха и продуктов горения нейтральная зона будет ближе к приточному проему.

С увеличением площади вытяжных отверстий значительно увеличивается скорость газообмена. Изменяя площадь проемов, можно изменить не только расположение нейтральной зоны, но и скорость выгорания.

Рис. 4. Расположение нейтральной зоны при газообмене через проемы расположенные на одной высоте.

При открытых нижних проемах, т.е. когда они являются приточно-вытяжными, расположение нейтральной зоны определяют по формуле:

где: H пр - высота наибольшего проема, м;

с в, с пг - плотность соответственно атмосферного воздуха и газообразных продуктов горения, кг/м 3 (табл. 1.4., с.22, Справочник РТП, 1987г.).

Чтобы ограничить развитие пожара (уменьшить скорость выгорания) необходимо до минимума сократить площадь приточных отверстий, затем, для снижения скорости притока воздуха и увеличения скорости вытяжки дыма, следует площадь вентиляционных отверстий привести в соответствие с площадью приточных отверстий.

Наиболее рациональное соотношение:

(S 1 /S 2) = 0,4 - 0,5 для помещений высотой до 3 м;

(S 1 /S 2) = 0,7 - 1,0 для помещений высотой более 3 м.

В этих случаях нейтральная зона будет находиться выше рабочей зоны.

Таким образом, при внутренних пожарах можно изменить скорость и направление газовых потоков, а также удалить дым и снизить температуру среды путем отвода тепла (распыленной струи воды, воздушно-механической пены, изменения площадей проемов и т.п.).

4. Параметры пожара

4.1 Продолжительность пожара

Развитие пожара - это изменение его параметров во времени и в пространстве от начала возникновения до ликвидации горения.

Пожар может развиваться до его тушению (свободное развитие), а также в процессе тушения.

где: ф п - продолжительность пожара, мин;

ф св - время от начала возникновения до подачи первых средств тушения (период свободного развития), мин;

ф лок - время локализации пожара, мин;

ф лик - время ликвидации пожара, мин.

Развитие пожара зависит от ряда факторов:

пожарной нагрузки - количества теплоты, которое может выделиться при пожаре с единицы площади пола или площади, занимаемой горючими материалами на открытой площадке;

допускается также определять пожарную нагрузку и по формулам:

Кг/м 2 ; кг/м 2 (5)

где: m o - масса пожарной нагрузки, распределенная по всей площади пола помещения или участка, кг;

S пол, S уч - площадь пола помещения (участка).

химических свойств и агрегатных состояния веществ;

условий передачи тепла, выделившегося при горении и его количества;

особенностей газового обмена;

конструктивного и планировочного решения здания;

метеорологических условий (снег, дождь, ветер);

скорости распространения горения и др.

4.2 Площадь, периметр и фронт пожара

Площадью пожара - называется площадь проекции зоны горения на поверхность земли или пола помещения.

При горении конструкций небольшой толщины, расположенных вертикально (стены, перегородки), а также штабелей лесоматериалов за площадь пожара может быть принята площадь проекции поверхности горения на вертикальную плоскость. Если горение происходит на нескольких этажах здания, то общая площадь пожара определяется суммой площадей пожара на всех этажах и чердаке.

В зависимости от места возникновения горения, рода горючих материалов, объемно-планировочных решений объекта, характеристики конструкций, метеорологических условий и других факторов площадь пожара может иметь круговую, угловую и прямоугольную формы. Такое деление является условным и применяется для упрощения расчетов при решении задач пожарной тактики.

Круговая форма (рис. 5а) площади пожара встречается, когда пожар возникает в глубине большого участка с пожарной нагрузкой и при относительно безветренной погоде распространяется во все стороны примерно с одинаковой линейной скоростью (склады лесоматериалов, хлебные массивы, здания и покрытия больших площадей и т.д.)

Прямоугольная форма площади пожара (рис. 5б) встречается, когда пожар возникает на границе или в глубине длинного участка с горючей загрузкой и распространяется в одном или нескольких направлениях: по ветру - с большей, против ветра - с меньшей, а при относительно безветренной погоде примерно с одинаковой линейной скоростью (длинные здания небольшой ширины любого назначения и конфигурации, ряда жилых домов с подворными постройками в селе и т.д.).

Пожары в зданиях с помещениями небольших размеров принимают прямоугольную форму от начала развития горения. В конечном итоге при распространении горения пожар может принять форму данного геометрического участка.

Угловая форма (рис. 5в,г) характерна для пожара, который возникает на границе большого участка с пожарной нагрузкой и распространяется внутри угла при любых метеорологических условиях. Эта форма может иметь место на тех же объектах, что и круговая. Максимальный угол площади пожара зависит от геометрической фигуры участка с пожарной нагрузкой и места возникновения горения. Чаще всего эта форма встречается на участках с углом 90 0 и 180 0 .

Рис. 5. Формы площади пожара.

Форма площади развивающегося пожара является основной для:

определения расчетной схемы пожара;

определения направления ввода сил и средств и их требуемого количества для тушения пожара.

Периметр пожара - это длина внешней границы площади пожара. Данная величина имеет важное значение для оценки обстановки на пожарах, развившихся до крупных размеров, когда сил и средств для тушения всей площади в данный момент времени недостаточно.

Фронт пожара (Ф п) - часть периметра пожара, в направлении которой происходит распространение горения. Данный параметр имеет особое значение для оценки обстановки на пожаре, определения решающего направления боевых действий и расчета сил и средств на тушение пожара.

4.3 Средние параметры скоростей развития пожара

Определяются следующими основными величинами:

линейная скорость распространения горения по пожарной нагрузке (V л), м/мин;

скорость роста (увеличения) площади пожара (V S), м 2 /мин;

скорость роста периметра пожара (V Р), м/мин;

скорость роста фронта пожара (V ф), м/мин.

Все эти величины определяют обстановку развития пожара и являются основой для расчета сил и средств для тушения и тактических решений по их расстановке.

Линейная скорость является основной физической величиной, определяющей поступательное перемещение горения по поверхности горящего вещества.

Линейная скорость распространения горения - это длина пути поступательного движения горения по поверхности горящего вещества в единицу времени.

V л = L / ф, (м/мин) (6)

где: L - путь, пройденный фронтом пожара, м;

ф - расчетное время распространения горения, мин.

Обычно линейная скорость неравномерна как по времени, так и по направлению. В одном и том же направлении она также неравномерна. По времени она увеличивается с ростом температуры пожара. На одном и том же пожаре линейная скорость различна и по отдельным направлениям. На одних направлениях она может быть максимальной, на других - равной 0. Это зависит от направления газового обмена и его скорости, расположения и горючих свойств веществ. Скорость распространения горения по вертикали всегда больше, снизу вверх, чем сверху вниз. При прочих равных условиях скорость распространения горения по горизонтали меньше, чем снизу вверх, и больше, чем сверху вниз.

В практике для оценки обстановки пожара и для расчета сил и средств пользуются средними линейными значениями скорости распространения горения, определенными на основе изучения пожаров и проведения лабораторных испытаний.

Линейная скорость зависит от свойств и агрегатного состояния горючих материалов, особенностей выделения и передачи тепла и газового обмена.

Наибольшую линейную скорость имеют горючие газы (от 25 м/мин у окиси углерода до 160 м/мин у водорода).

При горении ЛВЖ и ГЖ скорость распространения горения по их поверхности зависит от температуры нагрева жидкости и температуры вспышки (например, этиловый спирт 22,8 м/мин при температуре 20 0 С, толуол 50,4 м/мин).

Наименьшей линейной скоростью распространения горения обладают твердые горючие вещества, для подготовки которых требуется больше тепла, чем для жидкостей и газов (древесина в зависимости от влажности 1-4 м/мин, торфяные плиты в штабелях 0,7 - 1 м/мин, текстильные изделия на складах 0,3-0,4 м/мин). При отдельных видах наружных пожаров линейная скорость может достигать 400 м/мин и более (степные пожары, пожары зерновых культур и т.д. при сухой погоде и сильном ветре).

При пожарах в зданиях линейная скорость распространения пожара в одном направлении зависит от скорости газового обмена и способности горючих веществ к возгоранию.

Линейная скорость распространения горения в зданиях в целом, если в нем несколько помещений, меньше, чем в отдельных помещениях. В данном случае на скорость распространения горения оказывают влияние различные преграды (стены, перегородки, перекрытия и т.д.).

Для проведения расчетов условно принимается, что величина линейной скорости распространения горения по всем направлениям одинакова (табл.1.4., с.22-23, Справочник РТП, 1987г.).

При расчетах линейную скорость принимают:

в первые 10 минут развития пожара с момента его возникновения:

V л расч = 0,5V л табл

в интервале времени между первыми 10 мин развития пожара и до введения первого ствола на тушение:

V л расч = V л табл

после введения первого ствола на тушение:

V л расч = 0,5V л табл

Скорость роста (увеличения) площади пожара - это увеличение площади пожара в единицу времени.

V S = ДS п / Дф, м 2 /мин (7)

Она зависит от линейной скорости распространения горения, формы его площади и времени развития. Чем больше линейная скорость распространения горения, тем больше увеличивается площадь горения.

Скорость роста периметра пожара - это увеличение периметра пожара в единицу времени.

V р = ДР п / Дф, м/мин (8)

Скорость роста фронта пожара - это увеличение фронта пожара в единицу времени.

V ф = ДФ п / Дф, м/мин. (9)

4.4 Определение параметров пожара

Таким образом, если можно определить форму пожара на определенный момент времени в зависимости от геометрических размеров помещения, то параметры пожара определяются следующим образом:

при круговом развитии пожара:

при ф? 10 мин:

S п = р (0,5V л ф 1) 2 , м 2 (10)

Р п = 2р (0,5V л ф 1), м (11)

Ф п = 2р (0,5V л ф 1), м (12)

при ф >

S п = р (5V л + V л ф 2) 2 , м 2 (13)

Р п = 2р (5V л + V л ф 2), м (14)

Ф п = 2р (5V л + V л ф 2), м (15)

где: ф 2 = ф р - 10, мин;

ф р - время, на которое производится расчет, мин.

при ф >

S п = р (5V л + V л ф 2 + 0,5V л ф 3) 2 , м 2 (16)

Р п = 2р (5V л + V л ф 2 + 0,5V л ф 3), м (17)

Ф п = 2р (5V л + V л ф 2 + 0,5V л ф 3), м (18)

где ф 3 = ф р - ф св, мин;

ф св - время свободного развития пожара, мин.

при угловом развитии пожара (угол 180 0 ):

при ф? 10 мин:

S п = 0,5р (0,5V л ф 1) 2 , м 2 (19)

Р п = 5,14 (0,5V л ф 1), м (20)

Ф п = р (0,5V л ф 1), м (21)

при ф >10 мин, но стволы на тушение пожара не поданы:

S п = 0,5р (5V л + V л ф 2) 2 , м 2 (22)

Р п = 5,14 (5V л + V л ф 2), м (23)

Ф п = р (5V л + V л ф 2), м (24)

при ф > 10 мин и поданы стволы на тушение пожара:

S п = 0,5р (5V л + V л ф 2 + 0,5V л ф 3) 2 , м 2 (25)

Р п = 5,14 (5V л + V л ф 2 + 0,5V л ф 3), м (26)

Ф п = р (5V л + V л ф 2 + 0,5V л ф 3), м (27)

при угловом развитии пожара (угол 90 0 ):

при ф? 10 мин:

S п = 0,25р (0,5V л ф 1) 2 , м 2 (28)

Р п = 3,57 (0,5V л ф 1), м (29)

Ф п = 1,57 (0,5V л ф 1), м (30)

при ф >10 мин, но стволы на тушение пожара не поданы:

S п = 0,25р (5V л + V л ф 2) 2 , м 2 (31)

Р п = 3,57 (5V л + V л ф 2), м (32)

Ф п = 1,57 (5V л + V л ф 2), м (33)

при ф > 10 мин и поданы стволы на тушение пожара:

S п = 0,25р (5V л + V л ф 2 + 0,5V л ф 3) 2 , м 2 (34)

Р п = 3,57 (5V л + V л ф 2 + 0,5V л ф 3), м (35)

Ф п = 1,57 (5V л + V л ф 2 + 0,5V л ф 3), м (36)

при прямоугольном развитии пожара:

при ф? 10 мин

S п = n ? a (0,5V л ф 1), м 2 (37)

Р п = 2 , м (38)

Ф п = n ? a, м (39)

при ф >10 мин, но стволы на тушение пожара не поданы

S п = n ? a (5V л + V л ф 2), м 2 (40)

Р п = 2 , м (41)

Ф п = n ? a, м (42)

при ф > 10 мин и поданы стволы на тушение пожара:

S п = n ? a (5V л + V л ф 2 + 0,5V л ф 3), м 2 (43)

Р п = 2 , м (44)

Ф п = n ? a, м (45)

где: n - количество направлений развития пожара;

a - ширина помещения, м.

Если форму пожара на расчетный момент времени определить невозможно то параметры пожара определяются в следующей последовательности:

определяется путь, пройденный фронтом пожара за расчетное время;

определяется расчетная схема пожара;

в соответствии с геометрическими формулами определяются параметры пожара.

Определение пути, пройденного фронтом пожара (L):

L = V л ф, м (46)

· при ф? 10 мин:

L = 0,5V л ф 1 , м (47)

· при ф > 10 мин, но стволы на тушение пожара не поданы:

L = 5V л + V л ф 2 , м (48)

· при ф > 10 мин и поданы стволы на тушение пожара:

L = 5V л + V л ф 2 + 0,5V л ф 3 м (49)

Определение расчетной схемы пожара:

На плане объекта, выполненном в масштабе, откладывается величина пути, пройденного фронтом пожара от места возникновения во всех направлениях. С учетом преград и проемов в них, определяется форма площади пожара. По форме площади пожара определяют расчетную схему.

При определении площади пожара в здании, состоящем из нескольких сообщающихся помещений, расчет площади пожара производится отдельно для каждого помещения, и в нужный момент времени площади пожара суммируются, а полученный результат фиксируется как площадь пожара на данный момент времени.

При распространении горения из одного помещения в другое, например, через дверной проем, скорость распространения горения в другом помещении принимают равной V л таб (если общее время распространения горения с начала возникновения превышает 10 мин). При этом начальная форма площади пожара в помещении, где начинается распространение горения, обычно представляет полукруг с диаметром, равным ширине двери.

Размещено на Allbest.ru

Подобные документы

    Рассмотрение особенностей развития пожаров, начинающихся со стадии тлеющего горения. Основные признаки возникновения огня от маломощного источника зажигания. Изучение версии о возникновении пожара в результате протекания процессов самовозгорания.

    презентация , добавлен 26.09.2014

    Оперативно-тактическая характеристика здания торговой оптовой базы. Прогнозирование возможной обстановки, определение формы и площади пожара. Расчет материального баланса процесса горения. Тепловой баланс и температура горения. Параметры развития пожара.

    курсовая работа , добавлен 18.10.2011

    Пожар, его развитие и прекращение горения. Опасные факторы и формы площади пожара. Условия прекращения горения. Огнетушащие средства и интенсивность их подачи. Расход огнетушащих средств и время тушения пожара. Планирование действий по тушению пожаров.

    курсовая работа , добавлен 19.02.2011

    Оперативно-тактическая характеристика офисного центра, определение формы и площади пожара. Материальный и тепловой балансы процесса горения; параметры развития и тушения пожара. Количество огнетушащего средства и технических приборов для защиты объекта.

    курсовая работа , добавлен 29.03.2013

    Определение границ локальных зон теплового воздействия факела газового фонтана. Расчет теплосодержания теоретического объема продуктов горения. Мощность фонтана, теплота горения, интенсивность лучистого теплового потока в зависимости от расстояния.

    курсовая работа , добавлен 16.01.2016

    Возникновение ситуаций, осложняющих формирование и выявление очаговых признаков. Возникновение множественных первичных очагов пожара, их отличие от очагов горения. Нивелирование и исчезновение очаговых признаков в ходе развития горения. Пробежка пламени.

    презентация , добавлен 26.09.2014

    Характеристика исследуемого предприятия и анализ статистических данных о пожарах, произошедших на аналогичных объектах в России. Оценка состояния пожарной безопасности. Разработка вариантов возникновения, прогноза развития нештатных ситуаций и пожаров.

    дипломная работа , добавлен 23.06.2016

    Чрезвычайные ситуации, их поражающие факторы. Особенности неблагоприятного влияния поражающего фактора на человека, окружающую среду. Классификация чрезвычайных ситуаций, стадии развития, причины возникновения. Прогнозирование, зоны поражения при авариях.

    контрольная работа , добавлен 13.02.2010

    Классификация лесных пожаров по характеру распространения горения. Опасность пожара на открытых лесных пространствах. Этапы работ по тушению крупного лесного пожара. Причины возникновения, классификация торфяных пожаров, способы и средства их тушения.

    реферат , добавлен 15.12.2010

    Особенности развития пожара на воздушном судне, потерпевшем бедствие. Планирование боевых действий по тушению пожаров на воздушных суднах при проведении массовых мероприятий. Специфика расчета сил и средств на тушение пожара в ОАО "Аэропорт Сургут".

Прогнозирование и оценка пожарной обстановки в зданиях выражается в определении основных параметров пожара во времени и пространстве.

В начале проводиться оценка и прогнозирование обстановки в горящем помещении (в помещениях), а затем переходят к анализу возможной ее динамики с учетом влияния параметров сосредоточения и введения сил и средств.

Во всех случаях при тушении пожаров в зданиях прогнозируется три параметра развития пожара:

площадь пожара;

температурный режим в объеме горящего помещения (помещений);

газообмен при развитии пожара в помещении (помещениях).

При прогнозировании площади пожара в данном помещении основным параметром, определяющим ее величину во времени, является линейная скорость распространения горения v л, м/мин, которая является функцией пожарной нагрузки q п, коэффициента условий газообмена К г и высота помещений h:

v л = f(q п, К г, h)

В настоящее время пользуются усредненными значениями величин v л, полученными на основе математико-статистического анализа - описаний реальных пожаров.

При прогнозировании температуры необходимо иметь в виду, что в процессе свободного развития пожара может быть: нарастание температуры, установившейся режим и снижение температуры.

Установившийся режим наступает тогда, когда расход уходящих газов из горящего помещения равен сумме расхода поступающего воздуха и продуктов сгорания. Такое положение наступает при установившемся расположении нейтральной зоне в объеме горящего помещения (помещений) - плоскости, которой внутреннее избыточное давление равно атмосферному. Ниже нейтральной зоны давление меньше атмосферного, а поэтому в эту часть объема помещения будет приток наружного воздуха. Выше нейтральной зоны давление больше атмосферного. Это приводит к тому, что огонь и нагретые продукты горения будут распространяться, в первую очередь, в ту часть объема горящего помещения, которая располагается выше нейтральной зоны. Следовательно, очень важно при прогнозировании и оценке пожарной обстановки в отдельном помещении или здании в целом определить место расположения нейтральной зоны визуально на данный момент времени или аналитически с учетом возможной динамики пожара.

При наличии одного отверстия в ограждающих конструкциях горящего помещения нейтральная зона будет располагаться примерно на высоте 1/3 отверстий проема. При прогнозировании развития пожара в здании в целом нужно учитывать, что основными путями распространения огня в гражданских и промышленных зданиях могут быть наружные и внутренние поверхности сгораемых конструкций (стены, перегородки, перекрытия, крыши); проемы и различные конструкции в конструктивных элементах; лестничные клетки, шахты подъемников (лифты), вентиляционные каналы. Последние два вида путей являются и основными путями распространения дыма при пожаре в здании.

Преобладающее направление распространения огня и дыма при развитии пожара по различным схемам будет зависеть от степени огнестойкости, назначения и этажности здания, а также от планировки и компоновки помещений в них. Так, в одноэтажных зданиях первой степени огнестойкости преобладающим направлением распространения огня будет горизонтальное по поверхности пожарной нагрузки.

При пожарах в многоэтажных зданиях первой, второй, третьей степеней огнестойкости преобладающим направлением распространения огня можно также считать горизонтальное и внутри конструкций с воздушными конструкциями, особенно при коридорной системе. Однако в этих зданиях огонь может распространяться выше и ниже расположенные помещения по отношению к горящему, через различные отверстия в стенах и перекрытиях, по шахтам лестничных клеток и лифтов, по вентиляционным каналам.

В защищенных от возгорания зданиях 4-й степени огнестойкости огонь, преимущественно, также распространяется в горизонтальном направлении, но в вертикальном направлении опасность распространения огня здесь будет больше, нежели в зданиях 1-, 2-, 3-й степеней огнестойкости. При пожарах в зданиях 4-й степени огнестойкости преобладающим направлением распространения огня может быть вертикальное (вверх). Основными путями распространения дыма при пожарах в зданиях всегда будут вертикальные.

Увеличение интенсивности горения, распространению огня и дыма, при развитии пожара в здании может способствовать обрушение строительных конструкций.

Потери несущей способности в условиях пожара может происходить под действием температуры или в следствии уменьшения сечения конструкций за счет ее выгорания.

При рассмотрении оценки фактической степени огнестойкости конструкций, при тушении пожара в здании могут приниматься ошибочные решения. В практике имели место случаи, когда силы и средства выводятся с занятых позиций при отсутствии угрозы обрушения конструкций, и на оборот, а не своевременно не выводятся при создавшейся угрозе обрушения, что в некоторых случаях приводит к гибели личного состава.

Руководитель тушения пожара ориентируясь на нормативный предел огнестойкости, иногда (при большом пределе огнестойкости) не выделяет силы и средства на защиту конструкций, которые фактически оказываются в более жестких условиях, чем предусмотрено нормами, и могут потерять несущую способность.

При определении поведения строительных в реальных условиях нужно знать характерные признаки, предшествующие обрушению конструкций.

Так, например обрушению железобетонных конструкций обычно предшествует образование прогиба и трещин. Обрушение деревянных конструкций, защищенных слоем штукатурки, предшествует отслаивание штукатурки и т.п..

На строительные конструкции могут воздействовать различные динамические и статические временные нагрузки (падение вышележащих конструкций, ударная волна, образующаяся при взрыве, скопление личного состава, большое количество воды и т.д.).

Исходя из факторов, определяющих процесс развития пожара по различным схемам, можно сделать следующие выводы: наибольшая площадь пожара и зоны задымления возможна при развитии пожара по первой и второй схемам, наименьшая по третьей. При этом общая площадь пожара в здании определяется как сумма площадей во всех горящих помещениях.

Как показывает практика борьбы с пожарами в зданиях после распространения огня в вертикальном направлении (вверх), огонь начинает преимущественно распространяться по помещениям этажей. При этом характер распространения огня по помещениям этажей, как правило, будет односторонним или двусторонним. В некоторых случаях огонь может распространяться во все стороны (по кругу) или в каком-либо углу. Но с течением времени распространение огня будет двусторонним или односторонним. При этом ширина фронта распространения огня будет равна ширине помещения, в котором распространяется огонь.

Прогнозирование обстановке на
пожаре. Основные расчетные соотношения
1.
План лекции
Введение.
Прогнозирование обстановке на
пожаре. Ее цели и задачи.
2.
2. Основные расчётные
соотношения.

Прогноз последствий – это заблаговременный
прогноз обстановки на пожаре.
Под обстановкой на пожаре понимается
совокупность на определённый момент времени
данных о параметрах развития и тушения
пожара
Под оценкой и прогнозированием обстановки
понимается сбор и обработка исходных данных о
пожаре, определение размеров пожара и
нанесение их на карту (план), определение
влияния поражающих факторов.

Вопрос № 1 Прогнозирование и оценка
обстановки на пожаре
включает в себя:
1.Расчет динамики развития возможного
пожара.
2.Определение температурного режима на
пожаре, тепловых потоков.
3.Прогнозирование динамики задымления в
горящем и смежных помещениях, объёмах,
территории.
4. Прогнозирование зон загазованности,
масштабов возможных разрушений,
деформаций, проливов и т.д.

Прогнозирование проводится с целью:
1. Разработка активного варианта тушения пожара
2. Разработка и обоснование способов и приемов
проведения спасательных операций, ликвидаций
последствий аварийных ситуаций, пожаров, обеспечения
безопасности людей и материальных ценностей.
3. Разработка мер по обеспечению безопасных условий
ведения боевых действий, рассмотрение вопросов охраны
труда.
4. Разработка организационно-технических мер и
инженерных решений по совершенствованию
противопожарной защиты объекта дипломного
проектирования, организации подготовки и повышения
уровня боеготовности и боеспособности пожарных
подразделений, охраняющих данный объект, а также
подразделений пожарной охраны и пожарноспасательных служб региона, города

Вопрос №2. Основные расчётные соотношения
1.)При решении пожарно – тактикческих
задач используют следующие параметры
развития пожара
линейная скорость распространения горения, Vл
(м/мин.);
Время свободного развития, св (мин)
путь, пройденный огнем, L, (м);
площадь пожара, Sп, (м2);
периметр пожара, Pп, (м);
фронт пожара. Фп, (м);
скорость роста площади пожара, Vs, (м2/мин.);
скорость роста периметра пожара,Vр,. (м/мин.);
скорость роста фронта пожара, Vф, (м/мин.).

1.1)Линейная скорость распространения горения
представляет собой физическую величину,
характеризуемую поступательным движением фронта
пламени в данном направлении в единицу времени (м/с).
Она зависит от вида и природы горючих веществ и
материалов, от начальной температуры, способности
горючего к воспламенению, интенсивности газообмена на
пожаре, плотности теплового потока на поверхности
веществ и материалов и других факторов.
Линейная скорость распространения горения характеризует
способность горючего материала к перемещению по своей
поверхности высокотемпературной зоны химических
превращений. Этот параметр зависит от многих факторов,
в частности от физикохимических свойств горючего
материала, его агрегатного состояния, условий тепло-,
массо- и газообмена на пожаре и т.п.

Линейная скорость распространения горения
определяется по по таблице (приложение №). При
определении размеров возможного пожара линейную
скорость распространения горения в первые 10 минут
от начала возникновения пожара необходимо
принимать половинной от табличного значения
(0,5Vл). После 10 минут и до момента введения
средств тушения в зону горения первым
подразделением, прибывшим на пожар, линейная
скорость при расчете берется равной табличной (Vл), а
с момента введения первых средств тушения (воды,
ВМП, ОПС и т.д.) до момента локализации пожара она
вновь принимается половинной от табличного
значения (0,5Vл).

1.2). Определение времени свободного
развития горения.
Время свободного развития пожара - временной
промежуток от момента возникновения пожара до
начала его тушения.
св.= д.с.+ сб.+ сл.+ б.р. , [мин.],
Где:
сб.=1,5 - 2 мин. – время сбора личного состава по
тревоге;
б.р. = время, затраченное на проведение боевого
развертывания (в пределах 6--8 минут).
д.с = в практических расчётах время до сообщения
о пожаре принимается в пределах 8-12 минут.

сл. = время следования первого подразделения от
ПЧ до места вызова, берется из расписания
выездов пожарных подразделений, также сл.
можно определить по формуле:
сл.=,
[мин.],
L – длина пути следования подразделения от
пожарного депо до места пожара, [км];
Vсл. - средняя скорость движения пожарных
автомобилей, [км/ч] (при расчетах можно
принимать: на широких улицах с твердым
покрытием 45 км/ч, а на сложных участках, при
интенсивном движении и грунтовых дорогах 25
км/ч).

1.3).Определение пути, пройденного огнём.
Путь, пройденный огнём, определяется по формуле в
зависимости от времени до сообщения о пожаре на ЦУС.
Путь, пройденный огнем, от места возникновения
пожара является изменяющейся величиной, зависит от
линейной скорости распространения горения и периода
распространения горения. В зависимости от времени,
путь, пройденный огнем, можно определить по одной из
формул:
если св. 10 минут:
L=0,5Vл св. , [м];
если св.>10 минут:
L=0,5Vл 1+Vл 2=0,5Vл10+Vл 2=5Vл+Vл 2 , [м],
где:
1=10 минут;
2= св.- 1= св -10, [мин.]

1.4).Определение формы площади пожара.
В зависимости от места возникновения пожара,
геометрических размеров помещения или здания,
наличия противопожарных преград, пути, пройденного
огнём, площадь пожара может приобретать различные
формы: круговую, угловую, прямоугольную. Деление
форм площади пожара на три вида является условным и
применяется для упрощения практических расчётов.
На вычерченном плане этажа (участка, цеха, здания),
где произошел условный пожар, наносится длина пути
распространения горения [L] на заданный момент
времени (в масштабе), определяется и условнографически обозначается форма площади пожара. В
данном пункте записывается форма площади пожара.

1.3).Определение площади пожара.
Площадь пожара – это площадь проекции поверхности
горения твёрдых и жидких веществ и материалов на
поверхность земли или пола помещения.
КРУГОВАЯ форма площади
пожара встречается при
возникновении горения в
геометрическом центре
помещения или в глубине
большого участка с пожарной
нагрузкой, если скорость его
распространения во всех
направлениях при безветренной
погоде приблизительно
одинакова, (Рис.1а).
Sп =k× L2 , [м2].
K= 1

УГЛОВАЯ форма характерна для пожара, который
возникает на границе большого участка с пожарной
нагрузкой и распространяется внутри сектора. Она
может иметь место на тех же объектах, что и круговая.
Максимальный угол сектора зависит от геометрической
конфигурации участка с пожарной нагрузкой и от места
возникновения горения. Чаще всего эта форма
встречается на участках с углом 90 и 180 градусов.
УГЛОВАЯ 180o,
(Рис.1б):
Sп = k× L2,
[м2 ].
K= 0,5

УГЛОВАЯ 90o,
(Рис.1в):
Sп = k× L2 [м2].
K= 0,25

ПРЯМОУГОЛЬНАЯ форма площади пожара
встречается, когда горение возникает на
границе или в глубине длинного участка с
пожарной нагрузкой (длинные здания любого
назначения и другие участки с пожарной
нагрузкой небольшой ширины) и
распространяется в одном или нескольких
направлениях: по ветру – с большей, против
ветра – с меньшей, а при относительно
безветренной погоде примерно с одинаковой
линейной скоростью.
Пожары в зданиях с небольшими
помещениями имеют прямоугольную форму,
(Рис.1г;Рис.1д).
Sп =anL, [м2 ], где:
a – ширина помещения (здания), [м];
n – число сторон распространения горения
(чаще всего «n» равно единице или двум).

В процессе развития пожара его форма может изменяться.
Так, начальная круговая или угловая форма площади
пожара через определенный промежуток времени (по
достижении горения ограждающих конструкций) перейдет
в прямоугольную:
из круговой и угловой 180 гр. перейдет в прямоугольную,
при условии: 2L a;
из угловой 90 гр.: L a.
В итоге, если пожар будет и дальше распространяться, он
примет форму данного геометрического участка. При
прямоугольной форме помещения (здания) площадь
пожара в данном случае будет равна площади этого
помещения (здания):
Sп = аb, [м2], где:
b – длина помещения (здания), [м].



зависимости (рис. 1.4)

Если пожар имеет прямоугольную форму, то
площадь пожара увеличивается по линейной
зависимости (рис. 1.6)

При горении нефти и нефтепродуктов в
резервуарах форма площади пожара
соответствует правильной геометрической
фигуре емкости (кругу или прямоугольнику), а
при разлитой жидкости – ее площади.
Форма площади развивающегося пожара
является основой для определения расчётной
схемы, направлений сосредоточения и введения
сил и средств тушения, а также потребного их
количества для осуществления боевых действий.

1.5).Определение периметра пожара.
Периметр пожара (Рп) – это длина внешней границы
площади пожара. Данная величина имеет важное
значение для оценки обстановки на пожарах,
развившихся до крупных размеров, когда сил и средств
для тушения по всей площади в данный момент
времени недостаточно. Периметр пожара определяется
по формуле, в зависимости от формы площади пожара:
круговая: Рп = 2 L, [м];
угловая 180o: Рп = L + 2L , [м];
угловая 90o: Рп = (L)/2 + 2L , [м];
прямоугольная с дальнейшим распространением
пожара: Рп = 2(a+nL) , [м];
прямоугольная без распространения пожара:
Рп = 2(a+b) , [м].

1.6).Определение фронта пожара.
Фронт пожара (Фп) -- часть периметра пожара, в
направлении которой происходит распространение горения.
Данный параметр имеет особое значение для оценки
обстановки на пожаре, определения решающего направления
боевых действий и расчета сил и средств на тушение любого
пожара. Фронт пожара определяется по формулам:
при круговой форме пожара:
Фп = 2 L , [м];
при угловой 180 форме пожара:
Фп = L , [м];
при угловой 90 форме пожара:
Фп = (L)/2 , [м];
при прямоугольной форме с дальнейшим распространением
пожара:
Фп = na , [м];
при прямоугольной форме без распространения пожара:
Фп = 0.

1.7).Определение скорости роста площади пожара.
Скорость роста площади пожара (Vs) определяется по
формуле:
Vs =
[м2/мин.],
где:
- время на каждый расчётный момент, [мин.].
1.8).Определение скорости роста периметра пожара.
Скорость роста периметра пожара (Vр) определяется
по формуле:
– при круговой и угловой форме площади пожара;
Vр =
, [м/мин.]
-для прямоугольной формы площади пожара;
Vр =
, [м/мин.]

1.9).Определение скорости роста фронта
пожара.
Скорость роста фронта пожара (Vф)
определяется по формуле:
Vф =
, [м/мин.].

2.Расчет сил и средств для тушения пожара.
Каждый пожар характеризуется своеобразной обстановкой, для
его тушения требуются различные огнетушащие средства и
разное количество сил и средств. От правильного их расчёта
зависит успех тушения любого пожара.
2.1).Определение площади тушения.
Площадь тушения (Sт) - это часть площади пожара, которую
на момент локализации обрабатывают поданными
огнетушащими средствами.
В зависимости от того, каким образом введены силы и средства,
тушение в данный момент времени может осуществляться с
охватом всей площади пожара или только её части. При этом
расстановка сил и средств, в зависимости от обстановки на
пожаре, конструктивных особенностей объекта, производится по
всему периметру пожара или по фронту его локализации. Если в
данный момент сосредоточенные силы и средства обеспечивают
тушение пожара по всей площади горения, то расчёт их
производится по площади пожара, т.е. площадь тушения будет
численно равна площади пожара.

Если в данный момент времени обработка всей площади
пожара огнетушащими средствами не обеспечивается, то
силы и средства сосредотачиваются по периметру или
фронту локализации или по фронту для поэтапного
тушения. В этом случае расчет их осуществляется по
площади тушения.
Площадь тушения водой во многом зависит от глубины
обработки горящего участка (глубина тушения), hт. [м].
Практикой установлено, что по условиям тушения
пожаров эффективно используется примерно третья часть
длины струи. Поэтому в расчётах глубина тушения для
ручных стволов принимается -5 метров, для лафетных –
10 метров.
Следовательно, площадь тушения будет численно
совпадать с площадью пожара при её ширине (для
прямоугольной формы),

не превышающих 10 метров при подаче ручных стволов,
введенных по периметру навстречу друг другу, и 20
метров – при тушении лафетными стволами. В остальных
случаях площадь тушения принимается равной разности
общей площади пожара и площади, которая в данный
момент водяными струями не обрабатывается. В жилых и
административных зданиях с небольшими помещениями
расчёт сил и средств целесообразно проводить по
площади пожара, т.к. их размеры не превышают глубины
тушения стволами.

Формулы для определения площади тушения даны в
таблице:
Форма
площади
пожара
Значение угла, град
Площадь тушения при расстановке сил и средств
по фронту
круговая
360º
Рис. 2 г.
угловая
90º
Рис. 2 д.
При L > h
Sт = 0,25π h (2L – h)
При L > 3h
Sт = 3,57h (L – h)
угловая
180º
Рис. 2 е.
При L > h
Sт = 0,5π h (2L – h)
При L > 2h
Sт = 3,57h (1,4L – h)
угловая
270º
Рис. 2 ж.
При L > h
Sт = 0,75π h (2L – h)
При L > 2h
Sт = 3,57h (1,8L – h)
См. рис. 2 а,б,в.
При b > n h
Sт = n a h
При a > 2h
Sт = 2h (а + b – 2h)
прямоугольная
При L > h
Sт = π h (2L – h)
по периметру
При L > h
Sт = π h (2L – h)
Примечание. При значениях «а», «b» и «L», равных и меньше значений,
указанных в таблице, площадь тушения будет соответствовать площади
пожара (Sт = Sп) и рассчитывается по формулам, приведенным в п.1.3.
данных методических указаний.

2.2).Определение требуемого расхода воды на
тушение пожара.
Расход огнетушащего вещества (Q;q) – это
количество данного вещества поданного в единицу
времени (л/с, л/мин., кг/с, кг/мин., м3/мин.).
Различают несколько видов расходов огнетушащего
средства: требуемый (Qтр.), фактический (Qф.), общий
(Qобщ.), которые приходится определять при решении
практических задач по пожаротушению.
Требуемый расход – это весовое или объёмное
количество огнетушащего средства, подаваемого в
единицу времени на величину соответствующего
параметра тушения пожара или защиты объекта,
которому угрожает опасность.
В практических расчётах требуемого количества
огнетушащего вещества для прекращения горения
пользуются величиной его подачи.

Интенсивность подачи огнетушащих средств (I) –
количество данного огнетушащего средства, подаваемого в
единицу времени на единицу расчётного параметра
тушения пожара.
Под расчётным параметром тушения пожара (Пт)
понимается:
- площадь пожара, Sп;
- площадь тушения, Sт;
- периметр пожара, Pп;
- фронт пожара, Фп;
- объём тушения, Vпом.
Интенсивности подачи огнетушащих средств различают:
- линейная, Iл [л/(см); кг/(см)];
- поверхностная, Is [л/(см2); кг/(см2)];
- объёмная, IV [л/(см3); кг/(см3)].

Они определяются опытным путём и расчётами при
анализе потушенных пожаров. Поверхностную и
объёмную интенсивности можно определить по
«Справочнику РТП» стр.56-57. Линейная
интенсивность определяется по формуле:
Iл = Is * hт
Требуемый расход огнетушащего средства на тушение
пожара определяется по формуле:
Qттр. = Пт * Iтр. ,
где
Пт – величина расчетного параметра тушения пожара;
Iтр.–требуемая интенсивность подачи огнетушащего
средства (Приложение № 6).

2.3). Определение требуемого расхода воды на защиту.
Требуемый расход воды на защиту выше и нижерасположенных
уровней объекта от того уровня, где произошел пожар,
рассчитывается по формуле:
Qзащтр. = Sзащ *Iтрзащ, [л/с].
где:
Sзащ – площадь защищаемого участка, [м2];
Iтрзащ– требуемая интенсивность подачи огнетушащих средств на
защиту. Если в нормативных документах и справочной литературе нет
данных по интенсивности подачи огнетушащих средств на защиту
объектов например, при пожарах в зданиях, её устанавливают по
тактическим условиям обстановки и осуществления боевых действий
по тушению пожара, исходя из оперативно-тактической
характеристики объекта, или принимают уменьшенной в 4 раза по
сравнению с требуемой интенсивностью подачи на тушение пожара и
определяется по формуле:
Iтрзащ = 0,25 * Iтр. , [л/(с*м2)]

2.4). Определение общего расхода воды.
Qтр. =
+
., [л/с].
2.5). Определение требуемого количества
стволов на тушение пожара.
где:
Nтств. =
,
qств.– расход ствола, [л/с].

2.6). Определение требуемого количества стволов на
защиту объекта.
=
При осуществлении защитных действий водяными струями
нередки случаи, когда требуемое количество стволов
определяют не по формуле, а по количеству мест защиты,
исходя из условий обстановки, оперативно-тактических
факторов и требований «Боевого устава пожарной
охраны» (БУПО).
Например, при пожаре на одном или нескольких этажах
здания с ограниченными условиями распространения огня
стволы для защиты подаются в смежные с горящим
помещения, в нижний и верхний от горящего этажи,
исходя из количества мест защиты и обстановки на
пожаре.

Если имеются условия для распространения огня по
пустотам, вентиляционным каналам и шахтам, то стволы
для защиты подаются исходя из обстановки на пожаре:
- в смежные с горящим помещения;
- в верхние этажи, вплоть до чердака;
- в нижние этажи, вплоть до подвала.
Количество стволов в смежных помещениях, в нижнем и
верхнем от горящего этажах, должны соответствовать
количеству мест защиты по тактическим условиям
осуществления боевых действий, а на остальных этажах и
на чердаке их должно быть не менее одного.

2.7). Определение общего количества стволов на тушение
пожара и защиту объекта.
Nств. =
+
2.8). Определение фактического расхода воды на тушение
пожара.
Фактический расход (Qф) – весовое или объёмное количество
огнетушащего средства, фактически подаваемого в единицу
времени на величину соответствующего параметра тушения
пожара или защиты объекта, [л/с]; [кг/с]; [м3/с]; [л/мин.];
[кг/мин.]; [м3/мин.].
Фактический расход находится в зависимости от количества и
тактико-технической характеристики приборов подачи
огнетушащих средств и определяется по формуле:
=
*qств. , [л/с].

2.9). Определение фактического расхода воды на
защиту объекта.
=
*qств. , [л/с].
2.10). Определение общего фактического расхода
воды на тушение пожара и защиту объекта.
Qф =
+
, [л/с].

11). Определение водоотдачи наружного противопожарного
водопровода.
При наличии противопожарного водопровода
обеспеченность объекта водой проверяется по водоотдаче
данного водопровода. Обеспеченность объекта считается
удовлетворительной, если водоотдача водопроводной сети
превышает фактический расход воды для целей
пожаротушения. При проверке обеспеченности объекта водой
бывают случаи, когда водоотдача удовлетворяет фактический
расход, но воспользоваться этим невозможно из-за отсутствия
достаточного количества пожарных гидрантов. В этом случае
необходимо считать, что объект обеспечен водой частично.

Следовательно, для полной обеспеченности объекта водой
необходимы два условия:
- чтобы водоотдача водопроводной сети превышала
фактический расход воды (QcетиQф);
- чтобы количество пожарных гидрантов соответствовало бы
количеству пожарных автомобилей, которые необходимо установить на
эти гидранты (NпгNавт.).
Водопроводные сети бывают двух видов:
- кольцевые;
- тупиковые.
Водоотдача кольцевой водопроводной сети рассчитывается по
формуле:
Qксети = (D/25)2 Vв, [л/с],
где:
D – диаметр водопроводной сети, [мм];
25 – переводное число из миллиметров в дюймы;
Vв – скорость движения воды в водопроводе, которая равна:
- при напоре водопроводной сети H<30 м вод.ст. -Vв =1,5 [м/с];
- при напоре водопроводной сети H>30 м вод.ст. -Vв =2 [м/с].
Водоотдача тупиковой водопроводной сети рассчитывается по формуле:
Qтсети = 0,5 Qксети, [л/с].

2.12). Определение времени работы пожарного автомобиля от
пожарного водоёма.
При наличии на объектах пожарных водоёмов и использовании их
для целей пожаротушения определяют время работы пожарного
автомобиля установленного на данный водоисточник по формуле:
=
, [мин.],
где:
0,9 – коэффициент заполнения пожарного водоема;
Vпв – объем пожарного водоема, [м3];
1000 – переводное число из м3 в литры.
Время работы пожарного автомобиля с установкой его на пожарный
водоём должно соответствовать условию:
раб.> р*Кз,
где:
р – расчётное время тушения пожара (Приложение №17).[мин.];
Кз – коэффициент запаса огнетушащего средства определяется по
таблице (Приложение №9).

2.13). Определение требуемого запаса воды для тушения пожара и
защиты объекта.
На объектах, где запас воды для целей пожаротушения ограничен,
проводится расчёт требуемого запаса воды для тушения и защиты
по формуле:
Wв = Qтф * 60 * р * Кз + Qзащф * 60 * з, [л],
где:
з – расчётное время запаса определяется по таблице (Приложение
№9),[ч].
В тех случаях, когда на объектах огнетушащих средств
недостаточно, принимаются меры к их увеличению: повышается
водоотдача путём увеличения напора в сети, организуется
перекачка или подвоз воды с удалённых водоисточников,
специальные средства доставляются с резервных складов
гарнизона и опорных пунктов тушения крупных пожаров.
При наличии рек, озёр и других естественных водоисточников с
неограниченным запасом воды обеспеченность объекта данным
видом огнетушащего средства в расчётах не проверяется.

2.14). Определение предельного расстояния подачи огнетушащих средств.
Lпред=
, [м]
где:
Нн – напор на насосе, который равен 90-100 м вод.ст.;
Нразв –напор у разветвления, который равен 40-50 м вод.ст.;
Zм –наибольшая высота подъёма (+) или спуска (-) местности на
предельном расстоянии, [м];
Zств - наибольшая высота подъёма (+) или спуска (-) ствола от места
установки разветвления или прилегающей местности на пожаре, [м];
S- сопротивление одного пожарного рукава, (Приложение №11);
Q- суммарный расход воды одной наиболее загруженной магистральной
рукавной линии, [л/с];
«20»- длина одного напорного рукава, [м];
«1,2»- коэффициент рельефа местности.
Полученное расчётным путём предельное расстояние по подаче
огнетушащих средств следует сравнить с расстоянием от водоисточника,
на который установлен пожарный автомобиль, до места пожара (L). При
этом должно соблюдаться условие:
Lпред > L

2.15). Определение требуемого количества пожарных автомобилей, которые
необходимо установить на водоисточники.
Использование насосов на полную тактическую возможность в практике тушения
пожаров является основным и обязательным требованием. При этом боевое
развёртывание производится в первую очередь от пожарных автомобилей,
установленных на ближайших водоисточниках. Требуемое количество пожарных
автомобилей, которые необходимо установить на водоисточники, определяется по
формуле:
Nавт.= ,
где:
0,8 – коэффициент полезного действия пожарного насоса;
Qн – производительность насоса пожарного автомобиля, [л/с].
При одинаковой схеме боевого развёртывания отделений на основных пожарных
автомобилях расчет проводится по формуле:
Nавт.=,
где:
Qотд. – расход огнетушащего средства, которое может подать одно отделение,
[л/с].
В любом из указанных случаев, если позволяют условия (в частности, насоснорукавная система), боевые расчёты прибывающих подразделений должны
использовать для работы уже установленные на водоисточники пожарные
автомобили. Это не только обеспечит использование техники на полную мощность,
но и ускорит введение сил и средств на тушение пожара.

2.16). Определение требуемой численности личного состава для
тушения пожара.
Общую численность личного состава определяют путём
суммирования числа людей, занятых на проведение различных
видов боевых действий. При этом учитывают обстановку на пожаре,
тактические условия его тушения, действия, связанные с
проведением разведки пожара, боевого развертывания, спасания
людей, эвакуации материальных ценностей, вскрытия конструкций
и т.д. С учётом сказанного формула для определения численности
личного состава будет иметь следующий вид:
Nл.с.=Nгдзс*3+ Nств.«А»*2+
«Б» 1 +
«Б»*2+ Nп.б.*1+
Nавт.*1+ Nл*1+ +Nсв.*1+... ,
где:
Nгдзс - количество звеньев ГДЗС («3» – состав звена ГДЗС 3
человека)
Nств.«А» - количество работающих на тушении и защите стволов
РС-70 («2» – два человека, работающих с каждым стволом). При
этом не учитываются те стволы РС-70, с которыми работают звенья
ГДЗС;

«Б» - количество работающих на тушении пожара стволов
РСК – 50 («1» – один человек, работающий с каждым стволом).

работают звенья ГДЗС;
«Б» - количество работающих на защите объекта стволов
РСК – 50 («2» – два человека, работающих с каждым стволом).
При этом не учитываются те стволы РСК-50, с которыми
работают звенья ГДЗС, производящие защиту объекта;
Nп.б. – количество организованных на пожаре постов
безопасности;
Nавт. – количество пожарных автомобилей, установленных на
водоисточники и подающих огнетушащие средства. Личный
состав при этом занят контролем за работой насосно-рукавных
систем из расчёта: 1 человек на 1 автомобиль;
Nл - количество выдвижных лестниц на которые задействованы
страховщики из расчета: 1 человек на 1 лестницу;
Nсв. – количество связных, равное количеству прибывших на
пожар подразделений.

Ориентировочные нормативы требуемой численности
личного состава для выполнения работ на пожаре
приведены в приложении № 13.
При определении численности необходимо учитывать не
только нормативы, но и также конкретную обстановку на
пожаре и условия при его тушении.
Надо иметь в виду, что в общее количество личного состава
не включается средний и старший начальствующий состав,
а также водители пожарных автомобилей.
Если требуемая численность людей превышает
возможности гарнизона пожарной охраны, недостающее
количество личного состава компенсируется путём
привлечения к действиям на пожаре добровольных
пожарных формирований, рабочих, служащих, воинских
подразделений, работников милиции, населения и других
сил.

2.17). Определение количества отделений.
При определении требуемого количества подразделений
исходят из следующих условий: если в боевых расчётах
гарнизона находятся преимущественно пожарные
автоцистерны, то среднюю численность личного состава
для одного отделения принимают 4 человека, а при
наличии автоцистерн и автонасосов (насосно-рукавных
автомобилей) – 5 человек. В указанные числа не входят
водители пожарных автомобилей.
Требуемое количество отделений на основных
пожарных автомобилей (АЦ, АН, АНР) определяется по

Приступая к изучению, оценке и прогнозированию пожарной обстановки, необходимо, прежде всего, уяснить, что пожарная безопасность на любом объекте обеспечивается в соответствии с требованиями ГОСТ 12.1,004-91 и Правилами пожарной безопасности в Российской Федерации ППБ 01-93.

Основным условием пожарной безопасности является исключение контакта источника зажигания с горючей средой, т.е. выполнение системы предотвращения пожара. Отсюда вытекает важнейшая задача пожарной профилактики - тщательный анализ имеющихся на производстве источников зажигания и горючей среды, разработка комплекса организационно-технических мероприятий по исключению этих составляющих пожара.

Второе условие обеспечения пожарной безопасности направлено на обеспечение предприятия или объекта надежной системой противопожарной защиты, в особенности, если источники зажигания и горючая среда постоянно присутствуют по условиям технологического процесса. Система противопожарной защиты включает конструктивные., технические и собственно пожарно-технические защитные мероприятия (первичные средства пожаротушения, пожарную сигнализацию и пожаротушение). На реализацию этих систем направлены требования всех нормативных документов, регламентирующих пожарную безопасность.

Пожарно-техническое обследование (ПТО) объекта в целях оценки и прогнозирования пожарной безопасности заключается в определении источников зажигания и горючих веществ (материалов) на рабочих местах и разработке соответствующих противопожарных мероприятий, направленных на исключение (устранение) опасных проявлений источников зажигания и исключение горючих веществ и материалов из системы "источник зажигания - горючее вещество". При проведении ПТО необходимо определять возможные пути распространения огня при пожаре, моделировать последствия возникновения пожара в помещениях с целью уточнения действий работающих при пожаре и разработки первоочередных мероприятий, направленных на обеспечение безопасности персонала (в том числе устройство противопожарных преград, систем автоматической пожарной сигнализации и пожаротушения, систем раннего обнаружения и оповещения и т.д).

Состояние и содержание зданий, сооружений и помещений должно соответствовать требованиям норм строительного проектирования СНиП 21-01. В зданиях должны быть предусмотрены конструктивные, объемно-планировочные и инженерно-технические решения, обеспечивающие в случае пожара: возможность

эвакуации и спасения людей, возможность доступа личного состава пожарных подразделений и подачи средств пожаротушения к очагу пожара, нераспространение пожара на рядом расположенные здания, в том числе при обрушении горящего здания или сооружения.



Предотвращение распространения пожара достигается мероприятиями, ограничивающими площадь, интенсивность и продолжительность горения: конструктивными и объемно-планировочными решениями, ограничением пожарной опасности строительных материалов, снижением технологической взрывопожарной и пожарной опасности помещений и сооружений, наличием первичных средств пожаротушения, систем сигнализации и оповещения.

Особое внимание при оценке и прогнозировании пожарной обстановки должно быть уделено зданиям, помещениям и сооружениям, отнесенным к категориям взрыво- и пожароопасным (категории А и Б) и пожароопасным (категории В1-В4) в соответствии с требованиями ГОСТ 12.1.004-91 и ГОСТ 12.1.044-89.

Категории взрывопожарной и пожарной опасности помещений и зданий определяются для наиболее неблагоприятного в отношении пожара или взрыва периода, исходя из вида находящегося в помещениях или технологических установках горючих веществ и материалов, их количества и пожароопасных свойств, а также особенностей технологических процессов.

При анализе и прогнозировании пожарной опасности зданий и сооружений могут быть использованы расчетные сценарии, основанные на соответствии временных параметров развития и распространения опасных факторов пожара, процесса эвакуации персонала и боевых действий пожарных подразделений и расчетов по борьбе с пожаром.

Важное значение в выявлении, прогнозировании и оценке пожарной обстановки имеют мероприятия, проводимые по предотвращению лесных и торфяных пожаров. Для организации защиты лесов и торфяных массивов разрабатываются прогнозы пожарной обстановки на весенне-летний и осенний периоды. Данные прогноза систематически уточняются и дополняются и служат основой для проведения комплекса защитных мероприятий. Исходными данными для прогноза служат: сведения о наличии горючих материалов и их свойствах, сведения о метеоусловиях, о характере

местности, наличии источников воды и т.д. Основными факторами, влияющими на интенсивность распространения пожаров, является влажность воздуха и скорость ветра. Данные оценки пожарной обстановки служат основанием для проведения профилактических противопожарных мероприятий, основными из которых являются: строительство водоемов, создание противопожарных барьеров в наиболее опасных участках, поддержание в установленном порядке защитных полос и противопожарных разрезов, устройство дорог противопожарного значения, подготовка средств связи и технических средств тушения пожаров.



Включайся в дискуссию
Читайте также
Обязательный аудит: критерии проведения Обязательный аудит критерии малое предприятие
Составление смет на проектные и изыскательские работы
Транспортный налог в московской области Ставка по транспортному налогу в году